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Abstract
Purpose of Review We reviewed recent studies focused on assessing the relative roles of factors operating at different scales in
shaping animal populations, species, communities, and individual behaviors. Our goal was to summarize the current state of the
science by documenting trends and advances in approaches used to weigh the relative impact of drivers at different scales.
Recent Findings We identify several recent advances in remote sensing–based data collection, such as unmanned aerial vehicles and
terrestrial laser scanning, that have the potential to increase the range of scales over which more detailed measurements of the
composition and structure of environments can bemade.We also highlight the promise of experimental studies and specific statistical
approaches for providing a more solid understanding of the relative importance of factors operating at different spatial scales.
Summary We found that after nearly three decades of studies focused on the relative importance of factors operating at different
scales, no general pattern has emerged. There is no clear evidence that one scale or one set of scales consistently plays a larger role
than others. Nonetheless, it is clear from this research that ecological processes are indeed affected by processes operating at
multiple spatial scales. We conclude that a more productive line of questioning might focus not on the relative importance of
factors operating at different scales, but on understanding which factors affect a given process, at what scales they operate, and
how they interact.
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Introduction

The concept of scale, the spatial or temporal dimensions of an
object or event, continues to rise in the consciousness of

ecologists—recently capturing the attention of more gen-
eral audiences [1, 2]. In fact, awareness of the importance
of scale for understanding complexity across disciplines
has reached an all-time high [3]. This fascination with
scale arises from its potential to provide unified principles
for understanding and predicting patterns (e.g., species
richness) and processes (e.g., population dynamics) in a
highly complex world [4, 5]. Ecologists have recognized
problems of pattern and scale at least as far back as the
1930s [6], but it was the theoretical foundation laid in the
1980s and 1990s [4, 5, 7, 8] and the initial applications of
quantitative tools for addressing questions of scale in the
1990s [9–11] that helped establish the field of landscape
ecology.

The knowledge that processes operate at different spatial
and temporal scales is critical to our understanding of eco-
logical systems [7, 8]. Our ability to understand a given
process depends on the scales at which we choose to observe
it. For example, a study designed to better understand plant-
pollinator interactions would need to focus on much finer
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scales than a study focused on ungulate migrations. Fortunately,
we do have a basic understanding that processes tend to link
temporal and spatial scales—with slower processes occurring
over larger extents and faster processes operating at smaller
extents. However, we also know that the processes operating
at a given scale do not do so in isolation but are affected by
patterns and processes operating at both finer and broader spa-
tial and temporal scales—reflecting the hierarchical nature of
ecological systems [5, 12–14] (Fig. 1). Each level of biological
organization from the organism to the ecosystem is associated
with a domain of processes that operate over a range of scales in
space and time which includes everything that is below it in the
hierarchy. Constraints imposed by processes operating at finer
spatial scales can be seen as initiating conditions, which limit
the potential of processes at broader scales (higher levels in the
hierarchy) [15]. Similarly, lower levels in a hierarchy can be
constrained by higher level processes generating environmental
limits [16].

Armed with this understanding of the importance of scale
and the knowledge that processes and patterns at a given scale
are affected by those at broader and finer scales, ecologists
began to ask about the relative importance of the factors op-
erating at different scales. Are the processes and patterns in
question—e.g., habitat selection, population dynamics, com-
munity composition—driven more strongly by higher level
processes operating at broader scales or by lower level con-
straints from finer scales?

Developments over the last decade have made it more pos-
sible than ever before to explore ecological questions from a
multiscale perspective. Ecologists have developed a number
of theoretical and quantitative approaches to assess the relative
importance of factors at multiple spatial scales affecting ani-
mal populations, species, communities, and individuals.
Recent reviews and syntheses that compare and classify dif-
ferent multiscale approaches in wildlife ecology have been
particularly helpful for (1) establishing a foundation for un-
derstanding habitat selection and (2) highlighting recent

quantitative advances [17, 18]. However, the majority of re-
views have focused on studies of habitat selection or habitat
modeling. Furthermore, there have not been any recent re-
views since Mayor et al. [19] that span both terrestrial and
aquatic systems.

Here, we review recent efforts to understand the relative
influence on wildlife of factors operating at different scales.
We do so across both terrestrial and aquatic studies with the
hope that reviewing work in both realms in one place might
facilitate what is often an elusive cross-pollination of ideas
and approaches. We start with a brief overview of the way in
which these studies have defined scales. We then discuss the
ways researchers have been measuring the drivers of ecolog-
ical processes at these different scales and where recent ad-
vances have been made. Next, we review trends and advances
in approaches that have been used to compare the relative
influence of factors at different scales. Finally, we explore
how future progress in this area could be made by
reformulating our questions and implementing what could
potentially be considered best practices in study design and
data analysis.

What follows is not a quantitative, systematic review.
Conducting a comprehensive search for all studies that have
compared the relative effects of factors at different scales and
interpreting differences across response types, scale defini-
tions, and approaches made such a comparison difficult, if
not impossible. Nonetheless, to answer the specific question
of whether factors at larger or smaller scales tend to have
larger effects on animal responses, we conducted a targeted
search and quantified the results of those studies.

Defining Scales of Inquiry

To help build a meaningful understanding of the relative im-
portance of drivers of ecological patterns and processes at
different scales, studies need to use adequately defined,

Fig. 1 Hierarchical levels of
biological organization in relation
to spatial and temporal scales of
ecological processes. Scales of
ecological processes increase
from the level of an individual
organism to an entire ecosystem,
but the domains of processes for a
given level of biological
organization operate over a range
of scales in space and time that
includes everything that is below
it in the hierarchy [adapted from
107–109]
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ecologically meaningful scales. The selection of ecologically
meaningful scales is perhaps the most critical aspect of design-
ing a study to explore the relative impacts of factors at differ-
ent scales. For example, if one selects the appropriate scale at
which to explore fine scale drivers and an inappropriate scale
at which to explore broad scale drivers, one might conclude
that finer scale drivers are more important whether they are or
are not. In a 2009 review, Wheatley and Johnson [20] found
that the selection of scalers in many of the studies that explore
the role of drivers of ecological process across scales is often
arbitrary with little to no declared relationship to biology or
ecological process. This is generally true of the studies that
have been conducted between 2009 and 2019 as well.
Nonetheless, a number of studies either explicitly or implicitly
acknowledge a lack of understanding of the appropriate scale
at which to measure one or more variables [21•, 22]. One
study that explicitly explored the linkage between process
and scale is Chiavacci et al. [23•] who explored nest predation
and found different landscape correlates of predation rates at
different scales for different species.

Whereas all studies are faced with the challenge of
selecting ecologically meaningful scales, terrestrial studies ap-
pear to struggle with this more than do aquatic studies. The
majority of comparative multiscale studies we encountered
used scale labels of plot, local, landscape, and regional.
Many of these studies do provide an ecological justification
for the dimensions of the scales, but plot, local, landscape, and
regional are all human constructs and could be of any size. For
example, Mitchell et al. [24] used a 1-m2 local scale to explore
environmental drivers of soil microarthropod communities,
whereas Martin and Fahrig [21•], studying habitat relation-
ships for three mid-sized mammals, used a local scale of
70,650 m2. Other terrestrial studies define scales based on an
ecological unit, such as a stand, a piece of dead wood, or a
plant cluster [25–27]. Studies focused on movement or space
often use temporal extent to define scales of observation. For
example, Northrup et al. [28] defined spatiotemporal scales
based on activity patterns over 5-, 10-, 25-, and 170-h time
periods. In almost all cases, the scales used in terrestrial stud-
ies define a spatial extent, although, particularly in the case of
the ecologically defined scales, they may not be the same
across all observations. By contrast, relatively few studies
focus on different grains [29, 30].

In aquatic ecology, the hierarchical structure of hydrologic
drainage basins provides a template for conceptualizing the
physical processes that drive riverine ecosystems at multiple
scales in space and time [31]. The nomenclature for the hier-
archical organization of riverine habitat is relatively standard-
ized because the physical environment of streams imposes a
structure that is visually apparent. For example, basins (i.e.,
watersheds) contain sub-basins with tributaries that flow into
larger streams and accumulate in size downstream. The stream
network draining a hydrologic basin is divided into sections

(i.e., portions of stream between tributary junctions) that are
composed of reaches, which contain channel units (i.e., pools
and riffles). A channel unit can be further subdivided into
subunits and microhabitats. This schema forms the basis on
which factors influencing biological and physical responses in
streams can be quantified at multiple spatial scales [32]. The
influence of the surrounding landscape on a given point in a
stream network, thus, can bemeasured at any of the aforemen-
tioned levels (e.g., channel unit, reach, section, sub-basin, ba-
sin) and at various distances extending laterally from the
stream in riparian buffers of various widths. It is important
to note that the various levels in the hierarchy of stream habitat
represent relative differences in spatial scale and technically
require quantification to be interpretable [33]. For example, a
pool in a small headwater stream that is 1 m in width is likely
to be less than 10 m long, but a pool in a river 10 m in width
will be tens of meters long.

Measuring Drivers

Although some studies explore the same drivers across mul-
tiple scales, many explore different sets of potential drivers at
different spatial scales. We define “drivers” as the factors that
influence a given ecological response, i.e., population density,
occurrence, or habitat selection. In terrestrial ecology, typical
drivers that are measured at multiple scales include elevation,
aspect, slope, vegetation type, and land use (i.e., forest, agri-
culture, urban). In freshwater environments, drivers are usual-
ly quantified both on land and in the water. Land-based drivers
are similar to those in terrestrial ecology (see above). Aquatic
drivers, however, include water quality metrics (temperature,
pH, turbidity), underwater habitat type (pool, riffle), water
depth, and substratum type (sand, gravel, boulder). In general,
studies often rely on field data to describe patterns at finer
grains and smaller extents. Conversely, at broader scales, these
same studies tend to rely on remotely sensed data to describe
patterns and represent potential processes. Although this gen-
eralization tends to apply to both terrestrial and aquatic sys-
tems, there are, nonetheless, informative differences in the
types of drivers measured in the two realms.

Terrestrial

At finer spatial scales, multiscale terrestrial studies tend to
focus on the elements that structure an animal’s immediate
environment including plant species composition and
structure—factors affecting food availability, microclimatic
conditions, and predation risk—microclimates, and more rare-
ly interspecific interactions e.g., [34, 35]. At broader spatial
scales, these studies often focus on the impacts of landscape
composition—the elements that make up a landscape—

14 Curr Landscape Ecol Rep (2020) 5:12–24



climatic factors, and anthropogenic changes—e.g., land-use,
road density e.g., [36, 37]. That is not to say that some aspects
of landscape configuration—the way that elements that make
up the landscape are arranged—are not measured at broader
spatial scales. Fragmentation, distance to roads, patch sizes,
and edge densities are often explored at broader scales e.g.,
[38, 39•]. The factors at these broader scales often influence
larger scale movements and resource use on seasonal or annu-
al time scales, and also influence finer scale processes like
predation and local climatic conditions.

Advances in remote sensing are providing better estimates
of environmental patterns at broader scales as well as making
it easier to measure finer scale aspects of environmental struc-
ture across larger extents. For example, lidar (light detection
and ranging) can be used to measure structural aspects of
vegetation remotely over larger extents, in ways that would
traditionally require extensive and intensive ground-based
sampling [40]. More recent developments have allowed re-
searchers to start to assess composition with lidar [41].
There have also been advances in mapping various aspects
of the environment including land cover [42], vegetation
structure [43], and biomass [44] using combinations of lidar
and passive remote sensing products. Recent advances in the
application of lidar itself also provide the opportunities for
increasing our understanding of multiscale drivers. Ground-
based lidar—or terrestrial laser scanning (TLS)—can poten-
tially be used to more quickly and easily define vegetation
structure [45, 46] and the use of laser return intensity (LRI)
information from lidar could help resolve vegetation structure
over larger extents [47].

Unmanned aerial vehicles (UAVs) have the potential to
increase our ability to explore the drivers of ecological pro-
cesses at multiple scales [48]. UAVs can be used to, among
other things, survey animal populations [49], measure vegeta-
tion structure [43, 50], and map topography [51]. As with
advances in remote sensing products, UAVs can facilitate de-
tailed measurements of the terrestrial environment at broader
extents than is possible with ground-based sampling—
allowing researchers to more easily explore patterns at multi-
ple spatial scales.

Aquatic

In freshwater environments, drivers of ecological response are
measured both on land and in the water itself. On-land mea-
surements of drivers in aquatic ecology are generally made in
a similar manner as in terrestrial ecology (i.e., through direct
sampling or remote sensing), except that the spatial bound-
aries encompassing the area of influence for a given driver are
demarcated by the watershed. This is an important distinction
because aquatic response at a given point in a hydrologic
drainage network is influenced by the cumulative effects of

upstream factors on land and in the water. Measuring drivers
below the water surface presents a whole new set of chal-
lenges for visual observation, sampling, and aerial assessment.
Lakes, streams, and ponds are essentially opaque to the terres-
trial observer because the physical properties of the water
obstruct, limit, or at best, distort one’s view of the underwater
environment. Turbidity, surface roughness, and water depth
all add layers of uncertainty and logistical complexity to the
process of quantifying influences of environmental factors at
multiple spatial scales. This difficulty in sampling systems
that are essentially invisible to the human eye is widely rec-
ognized in marine ecology and limnology [9] and particularly
in soil sciences [52]. Compared with the open ocean and sub-
terranean environments, however, rivers, streams, and lakes
have an advantage in that they are relatively accessible.
Nevertheless, riverine ecologists interested in multiscale anal-
ysis of aquatic habitat must adapt their methods to the con-
straints imposed by the unique aspects of a flowing aqueous
environment [53]. Underwater techniques for habitat assess-
ment such as snorkeling, scuba, and remote cameras are effec-
tive only where turbidity is low and turbulence is limited [54].
Aquatic ecologists have attempted to resolve this problem by
using increasingly sophisticated remote sensing methods to
map rivers and streams in a manner that characterizes the
“riverscape” [55]. Remote sensing and in situ approaches for
quantifying riverine habitat at multiple spatial scales have de-
veloped rapidly in the last decade, and it is now feasible to
map water temperature [56, 57], water depth and velocity
[58], substratum type (e.g., gravel, cobble, boulder) [55],
and stream geomorphology [59] at a very fine spatial resolu-
tion over tens of kilometers.

Recent advances in remote sensing of freshwaters are mak-
ing it possible to explore drivers of ecological patterns at mul-
tiple spatial scales. However, these data are limited compared
with publicly available satellite and aerial imagery used by
terrestrial ecologists and collecting data with fixed-wing air-
craft or helicopters is often cost prohibitive. Unmanned aerial
vehicles have potential for application in some freshwater sys-
tems [60], but the extensive linear nature of rivers and streams
constrain the line-of-sight distance required by federal avia-
tion regulations. Furthermore, the sensor technology for
drones may not have the precision required for aquatic appli-
cations [61].

Where it is not feasible or cost-effective to use remote-
sensing approaches to quantify spatial patterns, field data
can be collected intensively and extensively to quantify
drivers at multiple scales. In contrast to terrestrial environ-
ments, the linear structure of rivers and streams makes this
approach more tractable because the spatial extent of interest
is only along the linear “riverscape” as opposed to across an
entire two-dimensional landscape [62]. For example,
Brenkman et al. [63] mapped aquatic habitat for fish at a very
high-resolution (i.e., every pool and riffle) over 65 km, and
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McGuire et al. [64] analyzed multiscale patterns of
streamwater chemistry samples collected every 100 m
throughout an entire headwater stream network (32 tribu-
taries). Developments in low-cost stream temperature sensor
networks and spatial modeling have also increased the spatial
extent and resolution of data available to freshwater scientists
and practitioners, facilitating the investigation of temperature
effects over tens to hundreds of kilometers [65]. Fiber optic–
distributed temperature sensing has been applied at a finer
spatial extent of kilometers, but with a resolution of meters,
to characterize hydrogeological factors and their influences on
the spawning behavior of brook trout overa range of scales
[66].

Study Designs and Analytical Approaches

Although many ecological processes have been explored
across a range of spatial scales, a true understanding of the
relative impact of factors at different scales can only be ob-
tained from a multiscale study explicitly designed to compare
drivers at different scales. Choices in the design process in-
clude whether the ecological process of interest (the response)
is measured at a single or at multiple scales, whether the
drivers (explanatory variables) are the same or different across
scales, and whether the grain of explanatory variables changes
with the extent of measurement. Some approaches require the
a priori definition of scales of observation whereas others are
more flexible, allowing the relevant drivers to emerge at the
relevant scale.

Studies have taken a variety of approaches to determining
the relative contribution of factors at different scales to eco-
logical processes. Wheatley and Johnson [20] created a typol-
ogy of multiscale habitat studies that captures the range of the
study designs used to date. Here, we adapt that typology to (1)
better reflect both the types of studies that have explicitly
explored the relative influence of different factors at different
spatial scales, (2) provide more detail about specific study
designs, and (3) be more inclusive of aquatic studies. The
important distinction to make between the typology outlined
by Wheatley and Johnson [20] and the simple classification
provided here is that Wheatley and Johnson were particularly
interested in calling out differences between studies focused
on the effects of changing the spatial scale of observation (e.g.,
how processes scale) and the multitude of other multiscale
studies.

Varying the Scale of Explanatory Variables
but Not the Response

The most commonly applied design across studies aimed at
determining the relative influence of factors operating at

different scales is one in which a response at one scale is
analyzed in relation to drivers at multiple scales. The pattern
or process of interest (e.g., bird nest locations, amphibian
community composition, fish abundances) is measured at a
single spatial extent. The potential predictors or drivers are
then measured at multiple spatial extents. Simple model com-
parison (e.g., comparing the fit of models built at different
scales and/or with multiscale predictors) is a common ap-
proach of analysis for studies of this type [25]. For example,
Duan et al. [67] modeled insect community composition in
400-m2 plots in response to explanatory factors measured at a
plot scale (400 m2), a “landscape scale” (1 ha), and a regional
scale. Wendt and Johnson [37] measured occupancy at the
scale of a nest box and modeled it as a function of box attri-
butes, local (17,660 m2), and home range (3.14 km2) scale
patterns.

Measuring a pattern or process at a single spatial scale and
the potential drivers at multiple scales generally makes intui-
tive sense. For example, it would be reasonable to explore the
potential effects of climate over larger spatial extents but to
study species interactions, food resources, or nesting sub-
strates over smaller extents. In fact, a hierarchical structuring
of habitat selection and resource use in which decisions at
finer scales are determined by decisions made first at broader
scales has long been proposed [68–70]. For example, as it
applies to avian habitat, at broader scales, processes and pat-
terns that affect activities occurring across a home range might
drive habitat selection—e.g., access to water and availability
of vegetation types suitable for nesting or foraging. At a finer
scale, however, the structure of vegetation might be important
for concealing movements or placing a nest.

However, there are also reasons for assessing the potential
impact of the same drivers across multiple spatial extents. For
instance, when little is known about the scales at which par-
ticular processes operate, it may be difficult to assign specific
processes to particular spatial extents. Studies that explore the
same explanatory variables across a range of spatial extents
tend to do so at larger spatial scales e.g., [21•, 35, 71]. This
may be because data used at larger extents is often remotely
sensed and, thus, is readily available for analysis at multiple
spatial extents, whereas finer sale patterns—e.g., in vegetation
structure—must be laboriously sampled to produce multiple
sampling extents. Alternatively, it may be that researchers
have a better understanding—or at least believe they have a
better understanding—of the extents over which finer scale
processes operate than they do of the extents at which broader
scale processes operate.

A number of different analytical techniques have been used
to compare the relative impact of factors at different spatial
scales on patterns or processes occurring at a single spatial
scale. Each of these approaches, in its own way, addresses
the critical challenge of cross-scale correlations in explanatory
factors and in so doing isolates the variation in the pattern or
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process of interest associated with each spatial scale.
Multicollinearity can be a problem in any observational study
but is particularly prevalent in multiscale studies given the
hierarchal structure of ecological systems. That is, drivers at
finer spatial scales influence factors at broader scales and fac-
tors, at broader scales constrain factors at finer scales. Battin
and Lawler [72] provided some examples of approaches that
could be used to tease apart contributions of factors operating
at different spatial scales. They focused on simulation model-
ing, variance partitioning, and hierarchical models. Since then,
significant progress has been made in these areas as well as
with other approaches. Below, we provide a brief review of
the approaches that have been used to date.

Variance Decomposition

One of the most widely used approaches to exploring the
relative contribution of factors at different spatial scales in-
volves decomposing or partitioning the variance explained
by the multiple factors into different elements based on the
spatial scale at which they were measured. Whittaker [73]
introduced this statistical approach as a means of isolating
the components of variation in a multivariate data set that
could be solely attributed to individual explanatory factors
and those that could not be attributed to individual factors
but were, instead, shared components of variation. Borcard
et al. [74] extended the approach to spatial analyses and
Cushman and McGarigal [75] first used the approach to ex-
plore multiscale relationships between bird community com-
position and environmental drivers at multiple spatial scales.
They partitioned the variance in bird community composition
into components that could be explained solely by factors at
the plot level, the patch level, and the landscape level—i.e.,
“pure” components—as well as components that were shared
by each pair of levels and all three levels, respectively. Later
studies applied the approach to individual species to explain
the relative contribution of drivers of abundance or presence at
different spatial extents [76].

The strength of variance decomposition lies in the ability to
isolate the components of variation explained by factors at
different scales. However, doing so does not always reveal a
clear hierarchy of influence. An isolated pure component of
variation can be solely attributed to the factor, or set of factors,
in question. However, the components of variation that are
shared across scales, which are the product of correlations
and/or interactions, cannot be solely attributed to a single
scale. When the pure components of variation from each of
the scales are large relative to the shared components of var-
iation, it may be possible to rank the relative contributions of
the factors at the different scales. Conversely, when the shared
components of variation are large compared with to pure

contributions of the scales, any clear ordering of the influences
of the scales are likely to be obscured [76].

A number of recent studies have used variance partitioning
to explore the relative importance of factors at different spatial
scales. These studies have focused on owl nesting habitat [37],
Lepidoptera assemblages [22], soil fauna composition [77],
stream fish assemblages [78], riverinemacroinvertebrate com-
munity composition in response to damming [79], drivers of
lake phytoplankton species richness [80], and many other re-
lationships. Although many studies using variance
partitioning are able to draw clear conclusions about the rela-
tive influences of factors at different scales, some are more
challenged by cross-scale correlations [22, 80, 81].
Interpreting the cause of the shared variance in these studies
is critical [80].

Hierarchical Models

Graham [82] described an approach to using sequential or
residual regression to address multicollinearity. Although
there are several ways to apply the approach to the analysis
of multiscale associations, each of these involves an implicit
assumption about the hierarchical structure of the relationship.
In the simplest application, a model is used to explore the
relationship between the response variable and a set of explan-
atory variables that are all measured at the same scale. The
residuals from this analysis are used as the response variable
in a model with the explanatory variables from a different
spatial scale. Again, this assumes a hierarchical structuring
of the system in question with relationships at a given scale
(often the broadest scale) constraining the relationships at fin-
er scales. Battin and Lawler [72] demonstrated such an ap-
proach using classification trees, andMcMahon and Diez [83]
provide a thorough description of hierarchical linear models
and two examples—using plants in this case.

Here, we highlight three examples of the application of
hierarchically structured statistical models to multiscale ques-
tions. Ranius et al. [26] used hierarchical Bayesian regression
to explore the relative importance of multiscaled factors in
structuring distributions of saproxylic beetles. Cuffney et al.
[84] used multilevel hierarchical models to explore the poten-
tial effects of regional scale influences on the effects of finer
basin-scale drivers on aquatic invertebrates and algal commu-
nities. Finally, Fenoglio et al. [85] used a multilevel Bayesian
model to explore the potential drivers of parasitoid density at
scales defined by a leaf, plant patch, and a city neighborhood.

Structural Equation Modeling

Graham [82] also recommended structural equation modeling
for addressing multicollinearity. Through a set of linked
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models, structural equation modeling facilitates the applica-
tion of specific theories to empirical data by defining the rela-
tionships between the various potential causal factors in a
system [86, 87]. As applied to multiscale studies, structural
equation modeling allows one to specify the potential causal
relationships between the factors at different spatial scales.
Stoner and Joern [38] used structural equation modeling to
explore the relative impacts of fragmentation and patch size
at a broader scale both directly and indirectly through impacts
on the plant and predator communities, on insect communi-
ties. Villeneuve et al. [88] used path analysis to explore the
direct and indirect impacts of watershed-, reach-, and site-
scale factors on macroinvertebrate communities across
France. Morante-Filho et al. [39•] used a similar approach to
look at the direct and indirect effects of forest cover and edge
density at broad scales both directly, and indirectly through
effects on fruit abundance and vegetation complexity at a finer
scale, on the frugivorous bird community in the Atlantic forest
of Brazil.

Experimental Studies

Another strategy for exploring the relationships between re-
sponses at a single scale and potential drivers at multiple
scales is the use of experimental approaches. Using an exper-
imental approach, the researcher “applies” the hypothesized
drivers as treatments, combining drivers from different spatial
scales to explore interactions. For example, Chacin and
Stallings [89] tethered fish to plots of artificial seagrass of
different densities in different locations to compare the relative
effects of broader scale drivers (turbidity, salinity, predator
community) and finer scale drivers (vegetative cover).
Similarly, Haynes et al. [90] attempted to tease apart the rela-
tive impacts on planthopper dispersal and distributions of
patch quality at a finer scale and matrix composition at a
broader scale. Finally, Frey et al. [91•] explored the impacts
of woody habitat heterogeneity at multiple spatial scales on
predation rates. They used artificial caterpillars to explore the
effects of vegetation structure at a finer scale of home gardens
to those at broader scales.

Varying the Scale of Both the Response
and Explanatory Variables

The studies discussed above that hold the spatial extent of the
response variable constant and vary the spatial scale of the
explanatory variables ask how factors at different scales af-
fect a single pattern or process. By contrast, studies that vary
both the extent of the sampling of the process or pattern of
interest and the extent of the potential predictors or drivers
ask a slightly different question. By varying the extent of

both the response and the explanatory variables, it is possible
to explore a broader range of ecological questions about a
pattern or process of interest. For example, the factors
influencing the population density of a given animal enumer-
ated in a 1-km2 sampling area may be completely different
from the factors affecting population density in a 10-km2

sampling area. Thus, predicting response (i.e., population
density) in 1 km2 is not the same as predicting response in
10 km2 because population density itself varies systematical-
ly with spatial scale. Mayor and Schaefer [92] eloquently
demonstrated this phenomenon by analyzing census data
for three species of mammals (squirrel dreys, beaver lodges,
and moose) and illustrating that population density was neg-
atively correlated with the area over which animals were
counted. Furthermore, the landscape attributes that were cor-
related with population density also varied depending on the
spatial scale (i.e., area) at which density was calculated.
Similar results have been shown for the population density
of Atlantic salmon in streams [93].

Examples of census data for animals over spatial extents
spanning tens of kilometers are limited, as are studies that
quantify ecological response at multiple scales. Such ap-
proaches have much to offer for understanding the relative
importance of drivers of species abundance at multiple
scales. However, collecting high-resolution data over large
areas or even data at more than one spatial scale has been
cost prohibitive in ecological studies despite its novelty and
potential for advancing ecological understanding and ad-
dressing resource management questions. In the following
paragraphs, we provide some notable terrestrial and aquatic
examples of these approaches and emphasize the sampling
designs and ecological questions of the studies as opposed to
specific analytical approaches, as were outlined in the pre-
ceding section on varying the scale of explanatory variables
but not the response. Our rationale is that (1) varying the
scale of both the response and explanatory variables is still
in its infancy and there are not many examples of this type of
analysis, and (2) analytical methods outlined in the preced-
ing section (e.g., variance decomposition, hierarchical
models, and structural equation modeling) can also be ap-
plied to studies that vary the scale of both the response and
explanatory variables, except that multiple iterations of these
approaches will be required in order to analyze responses at
multiple scales.

In terrestrial wildlife ecology, it is particularly challenging
to collect census data or to measure ecological responses at
multiple scales because it is difficult to locate and map species
that are cryptic and mobile. LaForge et al. [94] compared the
factors influencing population dynamics of feral horses at
multiple spatial scales by conducting a census of an entire
island in Canada. They analyzed the population density of
foals at three different spatial extents to determine the most
important predictors of mortality. The drivers of mortality

18 Curr Landscape Ecol Rep (2020) 5:12–24



differed depending on the spatial scale at which density was
calculated.

Census approaches have been applied in freshwater aquatic
systems, which are inherently difficult to sample. These spa-
tially continuous visual surveys of river fish abundance are
conducted over tens of kilometers [63], and the data can be
scaled to any grain size [i.e., river segment length; sensu 95] to
facilitate analysis over a nearly continuous range of scales
[96]. Video and imaging technology have improved in the last
decade, and these approaches have been applied to assess fish
and habitat data over various spatial scales across a temperate
reef [97]. Most commonly, however, sampling of ecological
responses in terrestrial and aquatic environments is discontin-
uous, with measurements made at distinct scales selected by
the investigator. For example, Millette and Keyghobadi [27]
explored the relative effects of habitat amount and configura-
tion onmidge genetic structure at multiple spatial scales. They
measured both genetic structure and habitat attributes at scales
associated with a plant, a cluster of plants, and a peatland, and
they measured corresponding habitat variables at each scale.
Wellemeyer et al. [98] similarly aggregated abundance from
reach to segment to basin in order to assess fish response at
multiple spatial scales without having to conduct a census of
entire river basins.

Until recently, the massive quantities of data obtained
through radio and satellite telemetry of animals have
been beyond the reach of the quantitative toolbox of
ecologists. These data are collected at relatively fine
intervals in time and provide high-resolution spatial data
on species response to multiscale drivers over broad
extents [99]. This allows the response of a tagged ani-
mal to be examined over a nearly continuous range of
scales to determine the domains over which a given
driver is ecologically relevant. Optimization techniques
can then be used to evaluate the response of species to
multiple drivers along a continuum of spatial and tem-
poral scales [17]. Northrup et al. [28] evaluated wildlife
responses to land use and resource management at spa-
tial extents that were defined at biologically justified
temporal scales. Lipsey et al. [100] used a novel spa-
tially hierarchical approach to integrate songbird re-
sponse conditionally across scales using Breeding Bird
Survey data. They found that species occurrence was
more strongly affected by local drivers when landscape
context was favorable than when it was unfavorable.
Rapid advances in analytical tools and computing power
are making it more and more feasible to use high-
resolution spatial and temporal data collected over large
areas and over long periods of time to conduct
multiscale studies that vary both the response and ex-
planatory variables. This is a new frontier in landscape
ecology that warrants additional work in both theoretical
and applied research.

Which Scales Are the Most Important?

This, of course, is a question that has many answers. If ecol-
ogists have learned anything, it is that the answer to any ques-
tion like this is that it depends. The relative importance of
different drivers at different scales will depend on the ecolog-
ical process being investigated, the drivers being considered,
the system, and the spatial and temporal aspects of the study,
among other things. Nonetheless, we attempted to discern
whether there is any consensus across studies that have com-
pared the relative effects on animals of factors at different
spatial scales. We constrained our analysis to studies pub-
lished in English that used variance partitioning to compare
the relative effects of factors at different scales, and that re-
ported the pure and shared components of variation associated
with each of the scales being addressed. Constraining the
studies in this way meant that we did not have to compare
results across analytical techniques and that we did not have to
rely on the authors’ interpretations of the relative importance
of different scales. We searched both the Web of Science and
Wildlife and Ecology Worldwide databases using the follow-
ing search: (*scale* AND relative AND (importance OR ef-
fect* OR influence*)) AND (variance partitioning OR vari-
ance decomposition).

Our searches highlighted a total of 368 papers, 26 of which
compared effects of factors at two or more scales and present-
ed the results in such a way that allowed us to compare the
pure and shared components of variation. Because some stud-
ies conducted their analyses on multiple groups (e.g., taxo-
nomic groups, individual species, separate biomes), we treated
those analyses separately and thus we report on 44 compari-
sons from the 26 papers. Of these comparisons, roughly half
(n = 21) compared the effects of factors at two scales, and the
other 23 compared the effects at three scales. For each com-
parison, we recorded whether the largest proportion of vari-
ance explained was from the smallest, largest, or intermediate
scale.

We found that half of the 44 comparisons reported shared
components of variance that were large enough relative to the
pure components to preclude definitive conclusions about
which scales had the largest effect on the pattern in question.
Large shared components of variance can obscure the effects
of individual scales because it is impossible to determine what
portion of that shared variance is attributable to relationships
with factors at a given scale. We considered a pure component
of variance large enough to have the dominant effect when,
compared with the sum of any other pure component and its
associated shared components, the pure component in ques-
tion was still larger. Of the 22 comparisons from which we
were able to conclude that factors from a given scale had
larger effects than those from other scales, 64% found the
largest effects at the smallest spatial scale, 27% at the largest
scale, and 9% at an intermediate scale.
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Our analysis indicated that factors at finer scales appear to
play a larger role in driving the patterns in question. That said,
this simple analysis is limited in a number of ways. First, these
studies were trying to explain different ecological patterns—
e.g., species richness, community structure, abundance, and
presence and absence. Second, several of these studies com-
pared the effects of drivers at a finer scale, drivers at a broader
scale, and spatial drivers, whereas other studies did not include
spatial location as a separate category of driver. It is possible
that had spatial factors not been analyzed separately, at least
some of the variance explained by spatial factors would have
been explained by the broader scale factors or by factors at an
even broader scale. Finally, these studies explored different
spatial scales.

Despite the fact that we cannot conclusively report that
factors at one scale play a larger role in structuring ecological
patterns than factors at other scales, there are some definitive
conclusions that can be drawn from these and all of the other
studies we reviewed. Perhaps the most important conclusion
that one can draw from the diversity of studies exploring the
relative importance of drivers at different scales is that in al-
most all cases, there are significant relationships with drivers
at multiple spatial scales. Although this is by no means sur-
prising, the relative consistency of this finding is impressive.
When studies explore drivers at multiple scales, they tend to
find relationships at multiple scales. Thus, explanations that
come from studies focused on a single scale are almost cer-
tainly limited. The results of these multiscale studies provide
an impressive volume of evidence for one of the foundational
tenets of landscape ecology—that processes operating at a
given scale tend to be influenced by processes operating at
both finer and broader scales [5, 12, 16].

Given that there will most likely always be drivers at
multiple scales affecting a particular ecological process and
that the relative importance of these factors will vary with
context, one might wonder whether asking about the relative
importance of different scales is a worthy pursuit. In some
instances, we suggest that it will be. For example, to inform
the conservation or management of a particular species or
system, one might legitimately need to know where to put
one’s efforts—whether that be changing land-use practices
throughout a watershed or altering structural complexity
within a stream reach [101]. However, if the goal is to iden-
tify an overarching principle—e.g., that broader scale pro-
cesses play the largest role in structuring animal
communities—an identification of key scales may not be a
beneficial use of an investigator’s time.

Instead of asking about the relative importance of factors at
different spatial scales, it might be more productive to ask
questions about the way systems work and how the various
components interact. For example, one might ask what drivers
affect community composition and at what scales those factors
operate. One might also ask how drivers interact and whether

some determine or constrain others, or whether they are causal
or merely correlated.

In shifting the focus away from searching for the dominant
scales of influence or the correct scale at which to study a
process, ecologists may want to change the way they approach
scale in general. The expectation that “problems of scale”
(sensu 8) can actually be solved may get in the way of the
understanding that “scale” and “scaling” are ways of thinking
about and investigating ecological phenomena [102]. Thus,
one must view “scale” as part of the approach and process
that unifies concepts and methods of scientific inquiry within
and across fields [103]. In this sense, concepts of scale become
integrated with the scientific method and are incorporated in
the process of ecological understanding [104].

Best Practices for Moving Forward

To treat scale as part of a comprehensive approach to investi-
gating ecological phenomena and to ask questions that focus
more on understanding entire systems, ecologists might con-
sider adopting a set of best practices that inform study designs
and subsequent analysis. Here, we highlight a few particularly
important practices and tools that we selected from some of
the more innovative studies covered by this review. First, it
will be important to acknowledge our lack of understanding of
the scale at which processes operate. This means not assuming
that a specific size of plot will be appropriate for a given
study—e.g., a 1-km diameter plot for measuring variables
representing landscape context, and a 10-m diameter plot for
measuring vegetation structure. It means that exploring vari-
ables across a continuous range of scales is important e.g.,
[21]. It also means that looking for relationships at finer and
broader scales than we might normally consider is essential.
At least one study we reviewed concluded that the relation-
ships of interest were found at a broader scale than had previ-
ously been explored [97], supporting the conclusion that ecol-
ogists are exploring too narrow a range of spatial scales [105].
Increasing availability of high-resolution remotely sensed data
that can detect vegetation composition and structure will make
it easier to investigate variables at broader scales than have
traditionally been explored.

To better understand how factors at different scales interact,
studies will need to adopt designs and analytical approaches
that allow the researcher to elucidate causal pathways and to
isolate drivers and interactions [106]. Experimental studies
provide one route to identifying causal factors and interactions
[91•]. Structural equation modeling provides another
approach—one that, like an experimental approach, forces
the researcher to layout their hypotheses for how the system
works and how factors affect one another at different scales
[e.g., 39•]. To date, these two approaches have been relatively
rarely used compared with simpler model-comparison studies.
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From the late 1980s to the present, ecologists’ understand-
ing of the implications of the scales at which they observe
ecological systems has evolved significantly. The field has
moved from the positing of concepts and theories about scale
in the 1980s and 1990s to the development of tools and tech-
niques that have facilitated the measurement patterns at mul-
tiple spatial scales in the 1990s and early 2000s. The most
recent decade has seen the application of these tools to many
questions of scale—including the search for the scales at
which the most influential drivers of a given ecological pro-
cess operate. Although this search has yet to reveal any con-
sistent predictions about where higher level or lower level
processes should predominate, it has provided a wealth of
empirical evidence to support several key suppositions.
Ecological systems are indeed influenced by processes oper-
ating at different spatial scales which interact in complex
ways. We conclude that perhaps the most fruitful line of in-
quiry moving forward will be to focus on these interactions
and to build a better understanding of the entire system in
which the processes and patterns of interest are situated.
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