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Abstract. Classification procedures are some of the most widely used statistical methods
in ecology. Random forests (RF) is a new and powerful statistical classifier that is well
established in other disciplines but is relatively unknown in ecology. Advantages of RF
compared to other statistical classifiers include (1) very high classification accuracy; (2) a
novel method of determining variable importance; (3) ability to model complex interactions
among predictor variables; (4) flexibility to perform several types of statistical data analysis,
including regression, classification, survival analysis, and unsupervised learning; and (5) an
algorithm for imputing missing values. We compared the accuracies of RF and four other
commonly used statistical classifiers using data on invasive plant species presence in Lava
Beds National Monument, California, USA, rare lichen species presence in the Pacific
Northwest, USA, and nest sites for cavity nesting birds in the Uinta Mountains, Utah, USA.
We observed high classification accuracy in all applications as measured by cross-validation
and, in the case of the lichen data, by independent test data, when comparing RF to other
common classification methods. We also observed that the variables that RF identified as
most important for classifying invasive plant species coincided with expectations based on the
literature.

Key words: additive logistic regression; classification trees; LDA; logistic regression; machine learning;
partial dependence plots; random forests; species distribution models.

INTRODUCTION

Ecological data are often high dimensional with

nonlinear and complex interactions among variables,

and with many missing values among measured

variables. Traditional statistical methods can be chal-

lenged to provide meaningful analyses of such data. In

particular, linear statistical methods, such as generalized

linear models (GLMs), may be inadequate to uncover

patterns and relationships revealed by more sophisticat-

ed procedures (De’ath and Fabricius 2000). Classifica-

tion procedures are among the most widely used

statistical methods in ecology, with applications includ-

ing vegetation mapping by remote sensing (Steele 2000)

and species distribution modeling (Guisan and Thuiller

2005). In recent years, classification trees (Breiman et al.

1984) have been widely used by ecologists because of

their simple interpretation, high classification accuracy,

and ability to characterize complex interactions among

variables.

A number of highly computational statistical meth-

ods, which have potential for ecological data mining,

have recently emerged from the machine-learning

literature. Random forests (hereafter RF) is one such

method (Breiman 2001). RF is already widely used in

bioinformatics (e.g., Cutler and Stevens 2006), but has

not yet been utilized extensively by ecologists. In the few

ecological applications of RF that we are aware of (see,

e.g., Lawler et al. 2006 and Prasad et al. 2006), for both

classification and regression RF is competitive with the

best available methods and superior to most methods in

common use. As the name suggests, RF combines many

classification trees to produce more accurate classifica-

tions. By-products of the RF calculations include

measures of variable importance and measures of

similarity of data points that may be used for clustering,

multidimensional scaling, graphical representation, and

missing value imputation.

Potential applications of RF to ecology include (1)

regression (Prasad et al. 2006); (2) survival analysis; (3)

missing value imputation; (4) clustering, multidimen-

sional scaling, and detecting general multivariate

structure through unsupervised learning; and (5) classi-

fication. Descriptions of capabilities 1–4 are given in

Appendix A; this article is concerned with RF as a

classifier, with particular application to species distribu-

tion modeling. We highlight some features and strengths

of RF compared to other commonly used classification

methods.
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THE RANDOM FORESTS ALGORITHM

Classification trees

In the standard classification situation, we have

observations in two or more known classes and want

to develop rules for assigning current and new observa-

tions into the classes using numerical and/or categorical

predictor variables. Logistic regression and linear

discriminant analysis (LDA) accomplish this by deter-

mining linear combinations of the predictor variables to

classify the observations. Classification trees build the

rule by recursive binary partitioning into regions that

are increasingly homogeneous with respect to the class

variable. The homogeneous regions are called nodes. At

each step in fitting a classification tree, an optimization

is carried out to select a node, a predictor variable, and a

cut-off or group of codes (for numeric and categorical

variables respectively) that result in the most homoge-

neous subgroups for the data, as measured by the Gini

index (Breiman et al. 1984). The splitting process

continues until further subdivision no longer reduces

the Gini index. Such a classification tree is said to be

fully grown, and the final regions are called terminal

nodes. The lower branches of a fully grown classification

tree model sampling error, so algorithms for pruning the

lower branches on the basis of cross-validation error

have been developed (Breiman et al. 2004). A typical

pruned classification tree has three to 12 terminal nodes.

Interpretation of classification trees increases in com-

plexity as the number of terminal nodes increases.

Random forests

RF fits many classification trees to a data set, and

then combines the predictions from all the trees. The

algorithm begins with the selection of many (e.g., 500)

bootstrap samples from the data. In a typical bootstrap

sample, approximately 63% of the original observations

occur at least once. Observations in the original data set

that do not occur in a bootstrap sample are called out-

of-bag observations. A classification tree is fit to each

bootstrap sample, but at each node, only a small number

of randomly selected variables (e.g., the square root of

the number of variables) are available for the binary

partitioning. The trees are fully grown and each is used

to predict the out-of-bag observations. The predicted

class of an observation is calculated by majority vote of

the out-of-bag predictions for that observation, with ties

split randomly.

Accuracies and error rates are computed for each

observation using the out-of-bag predictions, and then

averaged over all observations. Because the out-of-bag

observations were not used in the fitting of the trees, the

out-of-bag estimates are essentially cross-validated

accuracy estimates. Probabilities of membership in the

different classes are estimated by the proportions of out-

of-bag predictions in each class.

Most statistical procedures for regression and classi-

fication measure variable importance indirectly by

selecting variables using criteria such as statistical

significance and Akaike’s Information Criterion. The

approach taken in RF is completely different. For each

tree in the forest, there is a misclassification rate for the

out-of-bag observations. To assess the importance of a

specific predictor variable, the values of the variable are

randomly permuted for the out-of-bag observations,

and then the modified out-of-bag data are passed down

the tree to get new predictions. The difference between

the misclassification rate for the modified and original

out-of-bag data, divided by the standard error, is a

measure of the importance of the variable. Additional

technical details concerning the RF algorithm may be

found in Appendix A.

APPLICATION OF RANDOM FORESTS

TO ECOLOGICAL QUESTIONS

We provide examples of RF for classification for three

groups of organisms commonly modeled in ecological

studies: vascular plants (four invasive species), non-

vascular plants (four lichen species), and vertebrates

(three species of cavity-nesting birds). These examples

cover a broad range of data characteristics encountered

in ecology, including high to low sample sizes, and

underlying probabilistic and non-probabilistic sample

designs. The lichen data set also includes independent

validation data, thereby providing opportunity to

evaluate generalization capabilities of RF.

In all the examples that follow, we compare RF to

four other classifiers commonly used in ecological

studies: LDA, logistic regression, additive logistic

regression (Hastie et al. 2001), and classification trees.

The accuracy measures used were the overall percentage

correctly classified (PCC), sensitivity (the percentage of

presences correctly classified), specificity (the percentage

of absences correctly classified), kappa (a measure of

agreement between predicted presences and absences

with actual presences and absences corrected for

agreement that might be due to chance alone), and the

area under the receiver operating characteristic curve

(AUC). Resubstitution and 10-fold cross-validated

estimates of these five accuracy measures were computed

for all examples and methods. Except for the analyses

pertaining to variable importance, no variable selection

or ‘‘tuning’’ of the various classification procedures was

carried out. To assess variable importance for LDA,

backward elimination was carried out and the variables

retained in the model ranked by P value. For logistic

regression, backward elimination was carried out using

the AIC criterion, and as with LDA, the retained

variables ranked by P value. The variables split on in the

highest nodes in classification trees were deemed to be

most important for that procedure. Lists of the software

used in our analyses and of available software sources

for RF may be found in Appendix A.

We used predictors typically found in ecological

classification applications, such as topographic vari-

ables, ancillary data (e.g., roads, trails, and habitat
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types), measured field variables, and down-scaled

bioclimatic variables (e.g., Zimmermann et al. 2007).

Tables with detailed information on the predictor

variables used in each of our examples, and preliminary

analyses and preprocessing of the bioclimatic and

topographic predictors, may be found in Appendix B.

Predicting invasive species presences in Lava Beds

National Monument, California, USA

Background.—Invasions by nonnative species are an

increasing problem, especially in national parks. The

U.S. National Park Service (NPS) manages its lands

with an aggressive policy to control or remove invasive

species and prohibit the establishment of new invaders.

We used RF, classification trees, logistic regression, and

LDA to predict sites of likely occurrence of four invasive

plant species in Lava Beds National Monument (NM).

We obtained detection data from 2000 to 2005 for

Verbascum thapsus (common mullein), Urtica dioica

(nettle), Marrubium vulgare (white horehound), and

Cirsium vulgare (bull thistle), and GIS layers for roads

and trails within the monument. For our analyses, we

imposed a 30-m grid over Lava Beds NM and a 500-m

buffer outside the park (N¼244 733 total grid sites). Our

data included grid sites with one or more invasive species

present (n ¼ 7361 grid sites) and sites where all four

species were absent (n ¼ 890 grid sites). The predictor

variables for these analyses were 28 topographic and

bioclimatic variables, and three variables of distances to

the nearest roads and trails.

Results.—For V. thapsus, cross-validated sensitivities

for the four methods are all relatively high and similar

(Table 1). However, specificities differ substantially,

with RF performing substantially better than the other

classifiers (Table 1). For U. dioica and C. vulgare the

pattern is reversed: specificities are relatively high and

similar, while sensitivities differ, with RF performing

substantially better than the other classifiers (Table 1).

The estimated sensitivities and specificities for M.

vulgare are roughly the same for all four classifiers.

Overall, RF had the highest PCC, kappa, and AUC

values for all four invasive species. Classification trees

were consistently second best in terms of PCC,

suggesting some nonlinear structure that LDA and

logistic regression were unable to adequately model.

Three variables in the Lava Beds NM data set concern

distances to roads and trails. Because roads and trails

are considered natural vectors for entry and spread of

invasive species (Gelbard and Belnap 2003), we expected

that distances to roads and trails would be important

TABLE 1. Accuracy measures for predictions of presence for four invasive plant species in Lava Beds National Monument,
California, USA (N¼ 8251 total observations).

Accuracy metric

Classification method

Random forests Classification trees Logistic regression LDA

Resub Xval Resub Xval Resub Xval Resub Xval

Verbascum thapsus (common mullein; n ¼ 6047 sites)

PCC 95.3 92.6 84.2 83.2 80.6 80.0 79.4 79.2
Specificity 89.5 84.5 53.1 51.4 48.0 46.3 49.7 48.6
Sensitivity 97.4 95.5 95.5 94.7 92.5 92.3 90.2 90.3
Kappa 0.878 0.809 0.546 0.518 0.449 0.430 0.431 0.422
AUC 0.984 0.940 0.789 0.797 0.825 0.825 0.838 0.821

Urtica dioica (nettle; n ¼ 1081 sites)

PCC 93.9 92.9 91.3 90.5 88.8 88.6 87.1 87.1
Specificity 96.9 96.2 98.1 97.2 98.1 97.9 94.2 94.3
Sensitivity 74.6 70.4 45.9 45.6 27.1 26.7 40.0 39.0
Kappa 0.729 0.680 0.534 0.506 0.336 0.331 0.378 0.360
AUC 0.972 0.945 0.863 0.849 0.872 0.856 0.861 0.847

Cirsium vulgare (bull thistle; n ¼ 422 sites)

PCC 96.8 96.5 96.6 96.1 95.1 95.0 94.4 94.4
Specificity 98.8 98.7 99.6 99.4 99.4 99.4 98.0 98.1
Sensitivity 60.2 56.4 41.7 36.5 13.0 13.0 26.5 25.8
Kappa 0.643 0.607 0.540 0.474 0.209 0.195 0.297 0.296
AUC 0.938 0.914 0.772 0.744 0.810 0.784 0.789 0.762

Marrubium vulgare (white horehound; n ¼ 137 sites)

PCC 99.2 99.1 99.2 98.9 99.2 98.9 97.3 97.2
Specificity 99.8 99.7 99.9 99.7 99.9 99.7 97.7 97.7
Sensitivity 67.2 60.6 59.8 52.6 59.9 53.3 72.9 67.9
Kappa 0.738 0.678 0.716 0.621 0.706 0.627 0.463 0.434
AUC 0.988 0.949 0.873 0.867 0.972 0.944 0.918 0.906

Notes: LDA denotes linear discriminant analysis, PCC the percentage correctly classified, and AUC the area under the ROC
curve. Resub is resubstitution accuracy estimate and Xval is the 10-fold cross-validated accuracy estimate. Sensitivity is the
percentage of presences correctly classified. Specificity is the percentage of absences correctly classified. Kappa is a measure of
agreement between predicted presences and absences with actual presences and absences corrected for agreement that might be due
to chance alone. The largest cross-validated estimate for each classification metric for each species is in boldface type.
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predictors of presence for all four invasive species. This

expectation was met for RF: for each of the four

invasive species, these three variables were identified as

most important to the classifications (Fig. 1). The results

were similar for the other classifiers for V. thapsus: each

of the other classifiers selected two of the vector

variables among the four most important. However,

there was little consistency in the variables identified as

most important for the remaining three invasive species.

For example, none of the distances to roads or trails

variables were identified as being among the four most

important for any of the other classifiers for U. dioica.

Even though we cannot say that variables identified as

‘‘important’’ are right or wrong, the results for RF

coincide more closely with expectations based on

ecological understanding of invasions by nonnative

species.

The preceding results also illustrate how the variable

importance in RF differs from traditional variable

selection procedures. When several variables are highly

collinear but good predictors of the response, as are the

distances to roads and trails in the Lava Beds NM data,

stepwise and criterion-based variable selection proce-

dures will typically retain one or two of the collinear

variables, but discard the rest. In contrast, RF ‘‘spreads’’

the variable importance across all the variables, as we

observed with the distances to roads and trails. This

approach guards against the elimination of variables

which are good predictors of the response, and may be

ecologically important, but which are correlated with

other predictor variables.

Predicting rare lichen species presences

in the Pacific Northwest, USA

Background.—Our second application of RF involves

two data sets on epiphytic macrolichens collected within

the boundaries of the U.S. Forest Service’s Pacific

Northwest Forest Plan, USA. The first data set

(hereafter LAQ, n ¼ 840 randomly sampled sites) was

collected from 1993 to 2000 and the second, independent

data set (hereafter EVALUATION, n ¼ 300 randomly

sampled sites) was collected in 2003 in the same region.

We applied RF, classification trees, additive logistic

regression, and logistic regression, to the LAQ data and

used the EVALUATION data as an independent

assessment of the accuracy of the predicted classifica-

tions. Design details for the EVALUATION and LAQ

surveys and tables of predictor variable descriptions can

be found in Appendix B and in Edwards et al. (2005,

2006). Four lichen species in the LAQ and EVALUA-

TION data sets were the subjects of our analyses:

Lobaria oregana, L. pulmonaria, Pseudocyphellaria

anomala, and P. anthraspis. The predictor variables

were elevation, aspect, and slope, DAYMET bioclimatic

variables, and four vegetation variables: percentage of

broadleaf, conifer, and vegetation cover, and live tree

biomass.

Results.—For all four species, the PCC, kappa, and

AUC are highest for RF on the EVALUATION data,

and RF generally outperforms the other classification

procedures (Table 2). However, differences in accuracies

are much smaller than we observed for the Lava Beds

NM analyses, and in some cases are negligible. For L.

oregana, sensitivity and specificity on the EVALUA-

TION surveys for RF is better than the other classifiers,

except in the case of sensitivity for additive logistic

regression. It is interesting to note that the cross-

validated estimates of accuracy for L. oregana are

essentially the same for all four classifiers, while the

EVALUATION estimates differ substantially, suggest-

ing that even when both the training data and test data

are collected at randomly selected sites in the same

geographical region, cross-validated accuracy estimates

may not reflect the true differences among classifiers.

For L. pulmonaria, the PCC, kappa, and specificity for

classification trees and RF are essentially identical, and

are somewhat higher to much higher than those for

additive logistic regression and logistic regression. For

P. anomala, RF has somewhat higher EVALUATION

accuracy than the other three methods, which are

essentially the same. A similar pattern holds for P.

anthraspis, except that classification trees have the

largest sensitivity.

Partial dependence plots (Hastie et al. 2001; see also

Appendix C) may be used to graphically characterize

relationships between individual predictor variables and

predicted probabilities of species presence obtained from

RF. For binary classification, the y-axis on partial

dependence plots is on the logit scale (details in

Appendix C). In Fig. 2, there is almost a linear

relationship between the logit of the probability of

presence for L. oregana and the age of the dominant

conifer. For L. oregana, the logit of predicted probabil-

ity of presence shows a constant relationship to about

800 m and then decreases sharply. The same plot for P.

anthraspis shows a more linear decrease between 0 and

1200 m. The logit of estimated probability of presence

for L. pulmonaria suggests that the presence of this

species are associated with sites that have more

consistent precipitation over summer and winter.

!
FIG. 1. Variable importance plots for predictor variables from random forests (RF) classifications used for predicting presence

of four invasive plant species in the Lava Beds National Monument, California, USA. The mean decrease in accuracy for a variable
is the normalized difference of the classification accuracy for the out-of-bag data when the data for that variable is included as
observed, and the classification accuracy for the out-of-bag data when the values of the variable in the out-of-bag data have been
randomly permuted. Higher values of mean decrease in accuracy indicate variables that are more important to the classification.
Variable descriptions are given in Appendix B.
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Predicting cavity-nesting bird habitat

in the Uinta Mountains, Utah, USA

Background.—In this third example, we developed

species distribution models relating nest presence to

forest stand characteristics in the Uinta Mountains,

Utah, USA, for three species of cavity-nesting birds:

Sphyrapicus nuchalis (Red-naped Sapsucker), Parus

gambeli (Mountain Chickadee), and Colaptes auratus

(Northern Flicker). Classifications were developed for

each species separately, and for all three species

combined. This study is an example of the application

of RF to small sample sizes, to a mixture of probabilistic

(randomly selected locations) and non-probabilistic

(nest cavities) survey data, and shows one simple way

in which RF may be used to analyze data on multiple

species simultaneously.

The stand characteristics we used consisted of

numbers of trees in different size classes, numbers of

conifers and snags, and stand type (pure aspen and

mixed aspen/conifer), all considered habitat attributes of

cavity nesting birds (see Lawler and Edwards 2002 and

Appendix B). Within the spatial extent of the birds nest

sites for the three species, 106 non-nest sites were

randomly selected, and the same information as for the

nest sites was collected.

Results.—For S. nuchalis and P. gambeli, RF has

slightly better PCC, kappa and AUC than the other
methods, while for C. auratus all methods have similar

performance (Table 3). According to RF’s variable
importance measures, two stand characteristics—the

numbers of trees of size class 7.5–15 cm (NumTree3-
to6in) and 22.5–37.5 cm (NumTree9to15in)—were two

of the three most important variables for all three
species. Partial plots of these variables (Fig. 3) are

interesting for two reasons. First, the plots are
nonlinear. For the smaller-sized trees, the probability

of a nest cavity drops rapidly with increasing Num-

Tree3to6in, and then levels off. Larger trees (Num-
Tree9to15in) have the opposite effect: the probability of

a nest cavity rapidly increases, and then levels off. The
second striking feature of the partial dependence plots

for cavity nesting birds is that, for these two variables,
the plots look very similar for all three species,

suggesting that these species may be combined and
analyzed as a group. Group results are comparable to

the results for the individual species (Table 3). This
illustrates how RF is not limited to modeling a single

species; it may be used to analyze community data, and

to model several species in the same functional group
simultaneously. Other approaches to analyzing commu-

nity data using RF include using models for some

TABLE 2. Accuracy measures for predictions of presence for four lichen species in the Pacific Northwest, USA.

Accuracy metric

Classification method

Random forests Classification trees Additive logistic regression Logistic regression

Resub Xval EVAL Resub Xval EVAL Resub Xval EVAL Resub Xval EVAL

Lobaria oregana (n ¼ 187 sites)

PCC (%) 83.9 85.0 82.7 90.8 83.8 71.0 88.3 84.3 77.7 87.0 85.1 74.3
Specificity (%) 93.3 94.0 90.0 95.6 90.9 77.3 93.9 90.0 80.9 93.6 91.6 79.1
Sensitivity (%) 51.3 53.5 62.5 74.3 58.8 53.8 68.9 64.2 68.8 64.2 62.6 61.3
Kappa 0.489 0.523 0.542 0.725 0.516 0.295 0.651 0.544 0.465 0.606 0.557 0.381
AUC 0.889 0.892 0.867 0.910 0.817 0.753 0.946 0.897 0.818 0.924 0.904 0.806

Lobaria pulmonaria (n ¼ 194 sites)

PCC (%) 84.7 84.6 80.3 88.8 81.3 80.0 88.3 81.2 73.0 85.9 84.6 72.7
Specificity (%) 93.5 93.2 88.5 95.5 91.0 90.3 94.4 87.9 75.1 93.2 92.3 76.5
Sensitivity (%) 55.2 56.2 59.0 66.5 48.9 53.0 68.0 58.8 67.5 61.8 59.3 62.6
Kappa 0.529 0.533 0.492 0.663 0.432 0.464 0.655 0.468 0.387 0.582 0.544 0.364
AUC 0.883 0.885 0.869 0.898 0.810 0.818 0.941 0.806 0.776 0.904 0.883 0.759

Pseudocyphellaria anomala (n ¼ 152 sites)

PCC (%) 85.0 85.2 86.0 90.0 83.1 83.7 88.9 84.4 83.7 87.0 85.5 83.7
Specificity (%) 95.3 95.0 95.0 96.6 91.7 92.5 95.6 91.7 92.5 94.8 93.8 92.9
Sensitivity (%) 38.2 40.8 49.2 59.9 44.1 47.4 58.6 51.3 47.4 51.9 48.0 45.8
Kappa 0.398 0.418 0.499 0.626 0.386 0.436 0.592 0.449 0.436 0.516 0.460 0.428
AUC 0.865 0.870 0.861 0.865 0.794 0.794 0.944 0.865 0.829 0.905 0.878 0.854

Pseudocyphellaria anthraspis (n ¼ 123 sites)

PCC (%) 88.2 87.6 84.0 91.7 86.1 80.0 93.2 88.1 78.7 88.1 85.4 81.3
Specificity (%) 97.1 96.6 93.2 95.9 93.6 86.0 97.8 95.8 86.0 95.8 94.4 89.4
Sensitivity (%) 36.6 34.9 50.0 66.7 42.3 57.8 66.7 43.0 51.6 43.1 32.5 51.6
Kappa 0.416 0.389 0.476 0.652 0.392 0.424 0.704 0.449 0.372 0.449 0.315 0.424
AUC 0.875 0.874 0.816 0.908 0.822 0.807 0.966 0.682 0.801 0.898 0.862 0.810

Notes: Abbreviations are: Resub, resubstitution accuracy estimates; Xval, 10-fold cross-validated accuracy estimates computed
on lichen air quality data (N¼ 840 total observations); EVAL, pilot random grid survey (an evaluation data set with N¼ 300 total
observations); PCC, percentage of correctly classified instances; AUC, area under the ROC curve. The largest value for each species
and each metric in the EVALUATION data is in boldface type.
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species to predict for much rarer, but related, species

(Edwards et al. 2005) and modeling combined data with

variables that identify different species.

DISCUSSION AND CONCLUSIONS

In three RF classification applications with presence–

absence data, we observed high classification accuracy

as measured by cross-validation and, in the case of the

lichen data, by using an independent test set. We found a

moderate superiority of RF to alternative classifiers in

the lichen and bird analyses, and substantially higher

accuracy for RF in the invasive species example, which

involved complex ecological issues. In general, it is

difficult to know in advance for which problems RF will

perform substantially better than other methods, but

post hoc graphical analyses can provide some insight. In

principle, RF should outperform linear methods such as

LDA and logistic regression when there are strong

interactions among the variables. In Fig. 4, the bivariate

partial dependence plot for two variables in the bird

analyses shows a nonlinear relationship of the logit of

the probability of nest presence, but the effect of each of

these variables is approximately the same for each value

of the other variable. Thus, the effects of the two

variables are approximately additive, and in this case

one might expect that RF will only do slightly better

than additive methods such as LDA and logistic

regression, which is what we observed (Table 3).

However, in the partial dependence plot for U. dioica

in Lava Beds NM, (Fig. 4) there was a complicated

interaction in the effects of the distance to the nearest

road and the distance to the nearest road or trail. These

FIG. 2. Partial dependence plots for selected predictor variables for random forest predictions of the presences of three lichen
species in the Pacific Northwest, USA. Partial dependence is the dependence of the probability of presence on one predictor
variable after averaging out the effects of the other predictor variables in the model. ‘‘Winter� summer precipitation’’ is the total
winter precipitation (October–March) minus the total summer precipitation (April–September). An explanation of the y-axis metric
appears in Appendix C.
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TABLE 3. Accuracy measures for nest site classification of three species of cavity nesting bird species in the Uinta Mountains,
Utah, USA.

Accuracy metric

Classification method

Random forests Classification trees Logistic regression LDA

Resub Xval Resub Xval Resub Xval Resub Xval

Sphyrapicus nuchalis (Red-naped Sapsucker; n ¼ 42 nest sites)

PCC (%) 88.5 87.8 87.8 79.7 86.5 83.1 85.1 82.4
Specificity (%) 95.3 94.3 98.1 90.6 90.6 86.8 89.6 86.8
Sensitivity (%) 71.4 71.4 61.9 52.4 76.2 73.8 73.8 71.4
Kappa 0.702 0.687 0.667 0.463 0.668 0.593 0.634 0.574
AUC 0.916 0.918 0.848 0.761 0.929 0.879 0.909 0.868

Parus gambeli (Mountain Chickadee; n ¼ 42 nest sites)

PCC (%) 85.8 85.1 87.8 78.4 84.5 77.7 86.5 79.1
Specificity (%) 95.3 93.4 91.5 85.8 92.5 84.9 91.5 84.9
Sensitivity (%) 61.9 64.3 78.6 59.5 64.3 59.5 73.8 64.3
Kappa 0.621 0.612 0.701 0.460 0.597 0.448 0.663 0.488
AUC 0.872 0.880 0.896 0.756 0.890 0.800 0.881 0.803

Colaptes auratus (Northern Flicker; n ¼ 23 nest sites)

PCC (%) 87.6 86.8 89.9 82.2 90.7 86.0 89.9 85.3
Specificity (%) 97.2 96.2 95.3 92.5 98.1 93.4 98.1 95.3
Sensitivity (%) 43.5 43.5 65.2 34.8 56.5 52.2 52.2 39.1
Kappa 0.490 0.469 0.638 0.309 0.632 0.489 0.594 0.406
AUC 0.869 0.885 0.836 0.731 0.903 0.821 0.882 0.797

All species combined (n ¼ 107 nest sites)

PCC (%) 85.9 83.1 85.9 75.1 83.6 77.9 82.6 77.5
Specificity (%) 86.8 82.1 86.8 73.6 78.3 72.6 73.6 67.0
Sensitivity (%) 85.0 84.1 85.1 76.6 88.8 83.2 91.6 87.9
Kappa 0.718 0.662 0.718 0.502 0.671 0.558 0.652 0.549
AUC 0.906 0.893 0.883 0.735 0.890 0.816 0.878 0.807

Notes: Abbreviations are: LDA, linear discriminant analysis; PCC, percentage of correctly classified instances; AUC, the area
under the ROC curve; Resub, resubstitution accuracy estimate; Xval, 10-fold cross-validated accuracy estimate. There are 106 non-
nest sites. The largest cross-validated estimate for each metric and each species is in boldface type.

FIG. 3. Partial dependence plots for random forests classifications for three cavity-nesting bird species and two predictor
variables. Data were collected in the Uinta Mountains, Utah, USA. Partial dependence is the dependence of the probability of
presence on one predictor variable after averaging out the effects of the other predictor variables in the model. An explanation of
the y-axis metric appears in Appendix C.
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kinds of interactions are the likely reason for the clear

superiority of the tree-based methods, and RF in

particular, in this application.

The original motivation for the development of RF

was to increase the classification accuracy and stability

of classification trees. In many respects RF supersedes

classification trees: it is a more accurate classifier, and it

is extremely stable to small perturbations of the data.

For the classification situation, Breiman (2001) showed

that classification accuracy can be significantly improved

by aggregating the results of many classifiers that have

little bias by averaging or voting, if the classifiers have

low pairwise correlations. RF is an implementation of

this idea using classification trees which, when fully

grown, have little bias but have high variance. The

restriction of the number of predictors available for each

node in each tree in a RF ensures that correlations

among the resultant classifications trees are small. In

practical terms, RF shares the ability of classification

trees to model complex interactions among predictor

variables, while the averaging or voting of the predic-

tions allows RF to better approximate the boundaries

between observations in different classes.

Other classification procedures that have come from

the machine learning literature in recent years include

boosted trees, support vector machines (SVMs), and

artificial neural networks (ANNs). All these methods,

like RF, are highly accurate classifiers, and can do

regression as well as classification. What sets RF apart

from these other methods are two key features. The first

of these is the novel variable importance measure used in

RF, which does not suffer some of the shortcomings of

traditional variable selection methods, such as selecting

only one or two variables among a group of equally

good but highly correlated predictors. In the invasive

species example presented here, we observed that the

variables RF identified as most important to the

classifications coincided with ecological expectations

based on the published literature.

The second feature that distinguishes RF from other

competitors is the array of analyses that can be carried

out by RF. Most of these involve the proximities—

measures of similarity among data points—automatically

produced by RF (see Appendix A). Proximities may be

used to impute missing data, as inputs to traditional

multivariate procedures based on distances and covari-

ance matrices, such as cluster analysis and multidimen-

sional scaling, and to facilitate graphical representations

of RF classification results (Appendix C).

As with other highly computational procedures,

including boosted trees, ANNs, and SVMs, the relation-

ships between the predictor variables and the predicted

values produced by RF do not have simple representa-

tions such as a formula (e.g., logistic regression) or

pictorial graph (e.g., classification trees) that character-

izes the entire classification function, and this lack of

simple representation can make ecological interpretation

difficult. Partial dependence plots for one or two

predictor variables at a time may be constructed for

any ‘‘blackbox’’ classifier (Hastie et al. 2001:333). If the

FIG. 4. Bivariate partial dependence plots for bird nesting data (107 nest sites and 106 non-nest sites) in Uinta Mountains,
Utah, USA, and for Urtica dioica in Lava Beds National Monument, California, USA. Partial dependence is the dependence of the
probability of presence on two predictor variables after averaging out the effects of the other predictor variables in the model.
Variables are: NumTree3to6in, the number of trees between 7.5 cm and 15 cm dbh; NumTree9to15in, the number of trees between
22.5 cm and 37.5 cm dbh; DistRoad, distance to the nearest road (m); DistRoadTrail, distance to the nearest road or trail (m). An
explanation of the y-axis metric appears in Appendix C.
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classification function is dominated by individual vari-

able and low order interactions, then these plots can be

an effective tool for visualizing the classification results,

but they are not helpful for characterizing or interpreting

high-order interactions.

RF is not a tool for traditional statistical inference. It

is not suitable for ANOVA or hypothesis testing. It does

not compute P values, or regression coefficients, or

confidence intervals. The variable importance measure

in RF may be used to subjectively identify ecologically

important variables for interpretation, but it does not

automatically choose subsets of variables in the way that

variable subset selection methods do. Rather, RF

characterizes and exploits structure in high dimensional

data for the purposes of classification and prediction.

We have focused here on RF as a classification

procedure, but RF is a package of fully nonparametric

statistical methods for data analysis. Quantities pro-

duced by RF may also be used as inputs into traditional

multivariate statistical methods, such as cluster analysis

and multidimensional scaling. Unlike many traditional

statistical analysis methods, RF makes no distributional

assumptions about the predictor or response variables,

and can handle situations in which the number of

predictor variables greatly exceeds the number of

observations. With this range of capabilities, RF offers

powerful alternatives to traditional parametric and semi-

parametric statistical methods for the analysis of

ecological data.
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APPENDIX A

Technical details and additional capabilities of random forests (Ecological Archives E088-173-A1).

APPENDIX B

Data descriptions and details of data preprocessing (Ecological Archives E088-173-A2).

APPENDIX C

Visualization techniques for random forests (Ecological Archives E088-173-A3).
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