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Topographic, soil, and climate 
drivers of drought sensitivity 
in forests and shrublands 
of the Pacific Northwest, USA
Jennifer M. Cartwright1*, Caitlin E. Littlefield2, Julia L. Michalak3, Joshua J. Lawler3 & 
Solomon Z. Dobrowski4

Climate change is anticipated to increase the frequency and intensity of droughts, with major impacts 
to ecosystems globally. Broad-scale assessments of vegetation responses to drought are needed to 
anticipate, manage, and potentially mitigate climate-change effects on ecosystems. We quantified the 
drought sensitivity of vegetation in the Pacific Northwest, USA, as the percent reduction in vegetation 
greenness under droughts relative to baseline moisture conditions. At a regional scale, shrub-steppe 
ecosystems—with drier climates and lower biomass—showed greater drought sensitivity than 
conifer forests. However, variability in drought sensitivity was considerable within biomes and within 
ecosystems and was mediated by landscape topography, climate, and soil characteristics. Drought 
sensitivity was generally greater in areas with higher elevation, drier climate, and greater soil bulk 
density. Ecosystems with high drought sensitivity included dry forests along ecotones to shrublands, 
Rocky Mountain subalpine forests, and cold upland sagebrush communities. In forests, valley bottoms 
and areas with low soil bulk density and high soil available water capacity showed reduced drought 
sensitivity, suggesting their potential as drought refugia. These regional-scale drought-sensitivity 
patterns discerned from remote sensing can complement plot-scale studies of plant physiological 
responses to drought to help inform climate-adaptation planning as drought conditions intensify.

Climate change is projected to increase drought frequency and intensity in many parts of the  world1–3. Drought 
intensification combined with hotter temperatures may lead to forest decline through  mortality4,5 and recruitment 
 failure6, impacting primary production and ecosystem services such as wildlife habitat and carbon  storage7,8. 
To predict and manage these changes at regional scales, assessments of ecosystem responses to drought are 
needed across broad climate-vegetation types (biomes) to complement plot-scale studies on plant physiological 
responses to drought.

Vegetation responses to drought are controlled by physical processes at the landscape level such as soil water 
routing and retention, groundwater interactions, and evaporative  demand9–12 and by plant community composi-
tion and stress-tolerance thresholds of species, populations, and  individuals13–15. Variability across spatial and 
temporal scales in plant responses to drought can include differences in water-use efficiency, stomatal regulation, 
hydraulic characteristics, and structural adjustments to root networks and leaf  area7,15–18. For example, plant 
species and functional groups differ in their approaches to balancing trade-offs between regulating leaf-water 
potentials and maintaining stomatal conductance, with consequences for susceptibility to drought-induced 
carbon starvation and/or hydraulic  failure15,19.

Variability in plant responses to drought can influence aboveground productivity, which in turn produces 
spectral differences discernible in satellite imagery. Remote sensing has enabled regional- and global-scale assess-
ments of vegetation responses to drought that generally agree with information from other sources such as 
land-surface models, dendrochronology, flux-tower data, and field  observations18,20–22. For example, annually 
integrated Enhanced Vegetation Index (EVI) from the Moderate-resolution Imaging Spectroradiometer (MODIS) 
is strongly correlated with field measurements of aboveground net primary productivity (ANPP), allowing its use 
as a proxy for  ANPP18,23,24. For representing ANPP across a range of biomes, EVI is preferable to other spectral 
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indices such as Normalized Difference Vegetation Index (NDVI), due to the tendency of NDVI to saturate in 
high-biomass  areas25,26. Use of EVI to assess how vegetation productivity responds to droughts helps overcome 
the limited spatial availability and inconsistencies (both among and within sites) associated with field-based 
productivity  measurements23. However, regional-scale studies based on remote sensing can only detect vegetation 
responses to drought that produce canopy-level spectral changes, a subset of the potentially important responses 
that may also include physiological shifts and below-ground  changes27.

Although remote sensing provides powerful tools to identify broad-scale vegetation drought responses, 
anticipating the ecosystem effects of drought intensification requires improved understanding of the underly-
ing biophysical processes that shape drought impacts within and across biomes. Some factors governing drought 
responses may be greatly affected by climate change (e.g. regional temperature and moisture gradients), whereas 
others will be more stable through time (e.g. topographic and soil characteristics). Previous studies have char-
acterized large-scale spatial patterns of vegetation responses to meteorological variability and have linked these 
responses to patterns of biomass and climate, generally finding stronger drought impacts in areas where pro-
ductivity is water-limited18,20,26,28–30, but have not accounted for within-biome variability based on the effects 
of topography, soil, and landscape hydrology. These landscape characteristics produce spatial heterogeneity of 
soil water availability and evaporative demand during droughts, owing to processes such as soil drainage and 
water retention, water storage in weathered bedrock, lateral routing of soil water and groundwater, cold-air 
pooling, and shading from solar  radiation11,12,31,32. Such landscape characteristics can thus affect vegetation 
community structure and plant physiological responses to  drought5,6 including vulnerability to drought-induced 
 mortality12,33, and may produce localized areas of hydrologic buffering from climate variability and drought 
impacts, i.e., hydrologic  refugia11,31. Understanding the biophysical processes that shape ecosystem responses to 
drought can help land managers better anticipate—and potentially mitigate—biodiversity and ecosystem-service 
losses as droughts intensify.

We examined the landscape and climate controls on vegetation responses to drought across two prevalent 
biomes in the Pacific Northwest of the USA: conifer forest and shrub steppe. This region includes diverse topog-
raphy, climates, and vegetation (from temperate rainforest to semi-arid shrublands), allowing us to compare 
drought-response patterns across large gradients of energy and water availability. Comparison across large climate 
gradients is useful because relationships between landscape topography and vegetation responses to drought can 
vary depending on climate  conditions11. Like many areas of western North America, the Pacific Northwest region 
is projected to experience continued snowpack reductions, hotter and longer summers, and the intensification 
of seasonal  droughts2,34,35.

We conceptualized drought sensitivity as the reduction in ecosystem productivity in response to drought and 
quantified that sensitivity using EVI, which is representative of  ANPP18,23,24. This conceptualization of drought 
sensitivity is slightly different from—and complementary to—how other studies have assessed drought sensitivity, 
i.e., as the slope or correlation coefficient of the relationship between a meteorological metric and a vegetation 
metric such as EVI, NDVI, or  ANPP18,20,28,30. Correlation- or regression-based drought-sensitivity metrics typi-
cally represent vegetation responses across the full range of variability in climatic moisture conditions at a given 
site, from wet years to dry  years20,30. By considering differences in vegetation metrics under wet meteorological 
conditions relative to long-term average conditions, such correlation- or regression-based metrics are not strictly 
focused on drought per se, but rather on overall climatic variability. Our complementary approach focused only 
on drought effects, by comparing vegetation conditions under droughts of varying intensity levels versus under 
long-term average meteorological conditions. This approach enabled the differentiation of vegetation responses 
to severe versus moderate droughts and was not directly affected by vegetation responses to pluvial periods.

We used machine-learning models to investigate the spatial patterns of drought sensitivity related to factors 
that affect water availability, including climate, landscape topography, soil characteristics, and hydrologic indica-
tors. Because previous studies have found stronger vegetation responses to climate variability with decreasing 
climatic wetness and  biomass20,28, we anticipated that drought sensitivity would be greater in the shrub-steppe 
biome than in conifer forest. We also hypothesized that drought sensitivity would be reduced by soil character-
istics that increase water infiltration and storage and by topographic features that concentrate runoff or suppress 
evaporative  demand11,31,33. By examining the spatial drivers underlying drought sensitivity across biomes and 
drought-intensity levels, this study improves our ability to identify drought-sensitive ecosystems and anticipate 
ecosystem response to drought intensification under climate change.

Results
Regional drought sensitivity patterns. Drought sensitivity (S’) was generally greater in shrub-steppe 
areas than in forest (Fig. 1a,b), evident in geographic patterns of greater S’ values in sagebrush-dominated areas 
of southeastern Oregon and southern Idaho relative to forested parts of the study area such as western Wash-
ington and Oregon (Fig. 1c,d; see supplementary Fig. S1 for a map of landcover types, state names, and geo-
graphic features). In forests, the median reduction of EVI under drought relative to baseline conditions (i.e., 
drought sensitivity) was 3.75 and 4.98% (for moderate and severe drought, respectively), compared to 9.05 and 
14.11% for shrub-steppe areas. Sensitivities to moderate and severe drought were positively correlated (Spear-
man’s ρ = 0.50 and 0.55 for forest and steppe, respectively, both p < 0.001). Shrub-steppe areas showed greater 
differential sensitivity to severe compared to moderate drought than did forests: in shrub-steppe areas, sensitiv-
ity to severe drought (S’sev) exceeded sensitivity to moderate drought (S’mod) in roughly four out of five pixels, by 
6.8 units (percentage points) on average, whereas in forested areas, S’sev exceeded S’mod in fewer than two-thirds 
of pixels, by 4.2 units on average.
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Climate and landscape influences on drought sensitivity. Within both forest and shrub-steppe 
biomes, ecosystem types differed in both their baseline EVI and their drought sensitivity (Fig. 2). Shrub-steppe 
ecosystems tended to have lower baseline EVI than forest ecosystems, with the exception of pinyon-juniper 
(Pinus-Juniperus) woodlands (Fig. 2a). Geographic patterns of baseline EVI largely reflected gradients of actual 
evapotranspiration (AET) and climatic water deficit (Spearman’s ρ = 0.85 and -0.81, respectively, both p < 0.001), 
indicating that—as expected—baseline EVI is strongly associated with ecosystem productivity and is constrained 
by climatic water limitation. Secondarily, baseline EVI decreased somewhat with elevation (Spearman’s ρ = -0.41, 
p < 0.001), reflecting the lower productivity of subalpine forest ecosystems relative to lower-elevation coastal for-
ests west of the Cascade Mountains (Fig. 2; see supplementary Fig. S1 for geographic features of the study area).

Variability in drought sensitivity within ecosystem types was substantial (Fig. 2b,c) and ecosystem type 
contributed little to preliminary models (supplementary Fig. S2), highlighting the importance of climate and 
landscape (i.e., topographic and soil) variables in shaping drought sensitivity. Large within-ecosystem variability 
(Fig. 2b,c) and relative influence patterns (Fig. 3, supplementary Fig. S2) suggest that differences in drought 
sensitivity among ecosystems were driven primarily by ecosystem-level differences in climate and landscape 
characteristics.

Elevation was a dominant driver of S’ patterns, with climate variables and soil bulk density also playing 
relatively strong roles in explaining spatial patterns in S’ (Fig. 3). In forests located higher than 500 m above sea 
level, S’ generally increased with elevation (Fig. 4, supplementary Figs. S3 and S4), reflected in relatively high S’ 
for Rocky Mountain subalpine forests (Fig. 2). Shrub-steppe sensitivity to severe drought also increased strongly 
with elevation (Fig. 5, supplementary Figs. S5 and S6). Among shrub-steppe ecosystems, drought sensitivity 
was greater in sagebrush types (i.e., dwarf and tall sagebrush) than in Rocky Mountain shrubland and grassland 
(Fig. 2). These sagebrush ecosystems occur at higher elevations than Rocky Mountain shrubland and grassland, 
have more constrained productivity (lower AET) and greater water limitation (climatic water deficit), and are 
more prevalent in convergent environments (i.e., with high compound topographic index; CTI).

Figure 1.  Drought sensitivity (S’) for Pacific Northwest forests (a) and shrub-steppe areas (b), depicted as 
density plots of S’ distributions in response to moderate drought and severe drought. Solid diagonal lines in 
(a) and (b) represent 1:1 correspondence of moderate-drought sensitivity and severe-drought sensitivity. Thick 
dashed lines indicate median drought-sensitivity values; thinner dashed lines represent 25th and 75th percentile 
values. Maps in (c) and (d) depict sensitivity to moderate drought and severe drought, respectively, for all forest 
and shrub-steppe pixels analyzed. Landcover types, state names, and geographic features are available in fig. S1. 
Drought sensitivity was calculated using Enhanced Vegetation Index (EVI) data obtained from the Moderate-
resolution Imaging Spectroradiometer (MODIS) from EarthData  Search59. Data processing was performed in 
the R statistical  environment66. Maps were created using Esri ArcGIS Desktop v.10.4.174.
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Drought sensitivity generally increased with increasing water limitation in shrub-steppe areas and in forests 
with climatic water deficit > 300 mm (Figs. 4 and 5). Maps of median values of drought sensitivity by forest type 
show an overall geographic pattern of greater sensitivity in the drier forest ecosystem types east of the Cascade 
Mountains, i.e., pinyon-juniper woodland, Rocky Mountain subalpine, and Rocky Mountain mixed-conifer 
forests (Fig. 2). Sensitivity was greatest for pinyon-juniper woodland—the driest forest type in the region—and 
was also relatively high for the Mediterranean pine-oak (Pinus-Quercus) woodlands, whereas wet coastal forests 
showed generally low drought sensitivity.

Soil bulk density showed high relative influence in 3 of 4 models (i.e., in forests under severe drought and 
in shrub-steppe ecosystems under both moderate and severe droughts, Fig. 3), with S’ generally higher in areas 
with more compacted soils (Figs. 4 and 5). Although soil available water capacity (AWC) generally had lower 
relative influence, S’ was greatest in soils with lowest soil AWC under both drought-intensity levels in forests and 
in shrub-steppe areas under severe droughts. Areas of greater topographic convergence (higher CTI) such as val-
ley bottoms and riparian areas showed reduced S’ in forest (Fig. 4) but not in shrub-steppe (Fig. 5). Convergent 
areas are generally associated with deep soils and shallow groundwater  availability36. Contrary to expectations, 
however, none of the models showed compelling evidence for reduced drought sensitivity in areas of shallow 
groundwater, which may be attributable to underrepresentation of localized shallow groundwater availability at 
sub-kilometer scales (part 2 in supplementary material).

Several other variables with plausible connections to drought sensitivity contributed little toward explaining 
the observed drought-sensitivity patterns. The relative influence of drought exposure on S’ patterns was univer-
sally low for all models (Fig. 3), however, forest S’ tended to be greater in areas that had experienced the lowest 
previous drought exposure. Topographic shading metrics had low relative influence in preliminary models 
(supplementary Fig. S2) so were not used in final models.

Figure 2.  (a) Baseline Enhanced Vegetation Index (EVI) and sensitivity to (b) moderate drought (S’mod) and (c) 
severe drought (S’sev) by ecosystem types. Boxes show medians and interquartile ranges; dashed lines represent 
medians across all forest types (purple) and shrub-steppe types (blue); different letters represent significant 
differences from a pairwise t-test. Maps show median sensitivity to (d) moderate drought and (e) severe 
drought by forest ecosystem type, with median values assigned to all pixels mapped as that forest type; note 
this includes pixels not used for analysis due to disturbances. CS cascade subalpine forest, DS dwarf sagebrush, 
MMC Mediterranean mixed conifer forest, MPOW Mediterranean pine-oak woodland, PJ pinyon-juniper 
woodland, RMMC Rocky Mountain mixed conifer forest, RMS Rocky Mountain subalpine forest, RMSG Rocky 
Mountain shrubland and grassland, TS tall sagebrush, WWC  western wet conifer forest (see supplementary 
Table S1). Drought sensitivity was calculated using EVI data obtained from the Moderate-resolution Imaging 
Spectroradiometer (MODIS) from EarthData  Search59. Data processing was performed in the R statistical 
 environment66. Maps were created using Esri ArcGIS Desktop v.10.4.174.
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Models of landscape influences on drought sensitivity produced cross-validated correlation coefficients rang-
ing from 0.43 to 0.64 and explained from 44 to 67% of the deviance in drought sensitivity (medians across 20 
model runs; Fig. 6). For both forest and shrub-steppe biomes, these model fit statistics were higher for models 
of S’sev than S’mod, indicating that landscape characteristics better explained observed spatial patterns in drought 
sensitivity when droughts were more intense. Shrub-steppe models outperformed forest models at comparable 
levels of drought intensity (Fig. 6). Taken together, these patterns indicate that climate and landscape character-
istics were better able to explain spatial patterns in drought sensitivity when drought sensitivity was stronger.

Discussion
Vegetation responses to drought were discernible across two markedly different biomes at a regional scale, with 
EVI reduced under drought conditions relative to baseline conditions in over 95% of shrub-steppe pixels and 
80% of forest pixels. Drought sensitivity in this study likely reflected drought-induced changes to vegetation 
canopies—such as reductions in leaf area—that can interact with other drought-induced physiological stresses 
to impact ecosystem  productivity18,23,24,37. The sensitivity of ecosystem productivity to climate variability has 
implications for ecosystem services and processes including habitat availability and stability through time, nutri-
ent cycling and carbon storage, watershed hydrology, and diversity of species and plant functional  groups1,30. 
In certain cases, productivity reductions from drought may also signal slowdowns in tree growth preceding 
 mortality38,39. Such considerations are especially important in regions such as the western United States where 
drought intensification and climate aridification are projected under climate  change2,40.

Shrub-steppe ecosystems, which develop under drier climates and have lower biomass than conifer forests, 
showed stronger drought sensitivity and greater differential response to severe compared to moderate droughts 
than did forested areas. Previous studies have similarly found greater drought sensitivity in non-forest ecosys-
tems relative to forested  ones28 and in semi-arid regions compared to humid  ones30. Water-limited biomes with 
relatively low gross primary productivity have shown stronger coupling between hydroclimate variation and 
vegetation  greenness20, greater productivity decreases in response to extreme precipitation  patterns26 and heat 
 extremes24, and slower recovery after  droughts8. Thus, at broad spatial scales spanning large climate gradients, 

Figure 3.  Distribution of relative influence values for predictor variables (defined in Table 1) in boosted 
regression tree (BRT) models for drought sensitivity in (a) forests under moderate drought, (b) forests under 
severe drought, (c) shrub-steppe under moderate drought, and (d) shrub-steppe under severe drought. Boxplots 
represent variability across 20 models runs, showing interquartile ranges and medians (boxes) and minimum 
and maximum values (whiskers). This figure was created in the R statistical  environment66.
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our results agree with a general pattern of greater spectral sensitivity to drought in biomes with greater water 
limitation and lower biomass.

However, variability in drought response can be substantial within biomes and within ecosystems (Fig. 2)8,20,30, 
underscoring the importance of biophysical processes governing soil water availability and plant physiologic 
responses to water  stress11,12,33. Within-biome variability can be driven by endogenous factors (i.e., species com-
position) and by exogenous factors (climate, topographic, soil, and hydrologic characteristics). Ecosystem types 
explicitly represent species composition and are also shaped by exogenous factors. Ecosystem type added little 
explanatory power to preliminary models after accounting for exogenous factors (supplementary Fig. S2), sug-
gesting that within-biome variability in drought sensitivity is primarily driven by exogenous factors like climate, 
topography, and soils. Of these exogenous factors, links between climate and vegetation drought responses have 
been widely evaluated at regional-to-global  scales8,18–20,28,30, with fewer large-scale studies accounting for the 
effects of landscape topography, hydrology, and soil conditions (but  see11), despite site-scale studies demonstrat-
ing the importance of these attributes in shaping vegetation responses to  droughts41,42.

Evidence from this study suggests that in addition to climate controls, topographic features (e.g., valley 
bottoms) and soil characteristics that influence water availability to roots (e.g., bulk density and soil AWC) can 
play important roles in shaping drought sensitivity patterns. Such topographic features and soil characteristics 
effectively mediate the relationship between meteorological drought (i.e., negative anomalies in precipitation, 
potentially combined with positive anomalies in evapotranspiration) and its manifestations in hydrologic drought 
(e.g., negative anomalies in soil water reserves, shallow groundwater, or streamflow) and ecological drought (i.e., 
impacts on species and ecosystems)43,44. For a given regional intensity of meteorological drought, landscape fea-
tures that boost ecologically available water—such as valley bottoms that concentrate surface runoff and provide 
access to shallow groundwater—may help ameliorate ecological drought  impacts6,11,31. Conversely, landscape 
features that restrict ecologically available water—such as areas with highly compacted soils—may exacerbate 
ecological drought  impacts45. Furthermore, links between meteorological drought and ecological drought impacts 
are shaped by interactions of climate with landscape, geologic, topographic, and soil characteristics, such as in 

Figure 4.  Partial-dependence plots showing marginal influence on forest drought sensitivity (S’) of boosted-
regression tree model predictors (defined in Table 1). Lines represent smoothed averages across 20 model runs; 
see supplementary Figs S3 through S6. Histograms show distributions of predictors across all forest pixels 
used in modeling. Because of stochastic instability at the extreme ends of predictor variables (supplementary 
modeling results), our interpretation of partial-dependence plots focuses on the regions between the 5th 
and 95th percentiles of each predictor (vertical dashed lines). This figure was created in the R statistical 
 environment66.
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Figure 5.  Partial-dependence plots showing marginal influence on shrub-steppe drought sensitivity (S’) of 
boosted-regression tree model predictors (defined in Table 1). Lines represent smoothed averages across 20 
model runs; see supplementary Figs S3 through S6. Histograms show distributions of predictors across all 
shrub-steppe pixels used in modeling. Because of stochastic instability at the extreme ends of predictor variables 
(supplementary modeling results), our interpretation of partial-dependence plots focuses on the regions 
between the 5th and 95th percentiles of each predictor (vertical dashed lines). This figure was created in the R 
statistical  environment66.

Figure 6.  Distribution of drought sensitivity (S’) and model fit statistics (cross-validated correlation and percent 
deviance explained) for the four drought-sensitivity models. Horizontal bars represent the interquartile ranges 
for S’ across pixels. Vertical error bars represent interquartile ranges for the model fit statistics across 20 model 
runs. This figure was created in the R statistical  environment66.



8

Vol:.(1234567890)

Scientific Reports |        (2020) 10:18486  | https://doi.org/10.1038/s41598-020-75273-5

www.nature.com/scientificreports/

areas where plant community composition is shaped by chronically limited subsurface water storage capacity 
relative to annual  precipitation12.

Pacific Northwest forests span large gradients of energy and water availability and showed considerable varia-
tion in EVI responses to droughts. Drought sensitivity was generally high in forests with both high climatic water 
deficit and low AET (indicating chronic water limitation on productivity, Fig. 4), and forest drought sensitivity 
was highest in dry forests and woodlands such as pinyon-juniper woodlands (Fig. 2). Dry forests are commonly 
considered drought-tolerant, and their spectral responses to drought may in part reflect adaptations that allow 
tree species to persist through periods of soil water scarcity by sacrificing short-term  productivity13,15,17,28,46,47. 
Indeed, some dry forest types may expand their ranges as climates become drier, displacing more drought-
vulnerable vegetation types according to some climate  projections48,49. However, compared to more mesic for-
ests, dry forests have demonstrated greater drought  vulnerability46, stronger legacy effects from drought on tree 
 growth7, and disproportionate mortality during recent extreme drought in  California50. Furthermore, because 
dry forests commonly exist near the absolute climatic limits of forest biomes, they may be particularly vulnerable 
to drought-triggered transformations to shrublands and grasslands under climate change, especially if wildfires 
increase in frequency or  severity33,48,51,52. Thus, our findings underscore the importance of long-term monitoring 
in dry forest ecosystems—especially along forest ecotones to shrublands and grasslands—as droughts intensify 
and become  hotter2,4,41,52.

Our observation of muted spectral response to drought in wetter forests west of the Cascade Mountains 
(Figs. 2 and 4) does not necessarily imply that these forests are invulnerable to droughts, but rather that EVI 
does not fully capture the physiological and ecological consequences of drought in these forest types, particularly 
over the time-scales of this study. Compared to highly water-limited forests, wetter forests have shown reduced 
coupling between growth rates and interannual variability in climatic  moisture20,47 and may show more subtle or 
less immediate canopy changes in response to  droughts20. However, prolonged drought stress can cause profound 
impacts on wet forests up to and including mortality, in part because tree species have fewer adaptive responses 
(e.g., cavitation resistance) to cope with moisture  deficits14. Such species tend to invest more resources into 
competing for light (e.g., via height and leaf area) than hydraulic architecture to withstand water  stress47,50 and 
may show reduced water-use efficiency under  drought17. Thus, long-term (i.e., multi-year) droughts and extreme 
drought conditions (which were not observed in this study) are likely to affect forest growth rates and carbon 
storage in the wetter forests of the region and to elevate vulnerability to large wildfires and insect  outbreaks34.

Our results suggest relatively high sensitivity to severe drought for high-elevation forests in Idaho’s Rocky 
Mountains, whereas subalpine forests of the Cascade Mountains—which are lower in elevation and climatically 
wetter—showed lower sensitivity (Fig. 2). Although high-elevation energy-limited forests generally have low 
climatic water deficits, soil water storage and tree root network development may be constrained by shallow, 
rocky soils. Steep slopes in mountainous areas can facilitate rapid runoff of rainfall and snowmelt, further limit-
ing soil water reserves. High-elevation vegetation is commonly adapted to deep snowpack, creating vulnerability 
to drought-induced snowpack  reductions42,53. Relatively high drought sensitivity in Rocky Mountain subalpine 
forests (i.e., energy-limited environments with low productivity, low AET, and moderately low levels of water 
limitation) helps explain why forest drought sensitivity was not monotonically related to AET or climatic water 
deficit (Fig. 4).

Patterns of forest drought sensitivity highlight the importance of considering topographic and soil char-
acteristics that can create heterogeneous soil–water availability within forest ecosystems. For example, effects 
of meteorological drought may be compounded by compacted soils with limited AWC (Fig. 4)33. Conversely, 
localized forest refugia from drought might be supported by convergent topography and areas of low soil bulk 
density and high soil AWC 54,55. Forest drought sensitivity was reduced in convergent areas with high CTI (Fig. 4), 
such as valley bottoms. Such convergent areas tend to have relatively deep soils and shallow groundwater, receive 
upslope water subsidies, and may experience cold-air pooling, which can suppress evaporative  demand6,11,31. In 
the context of warmer future climates and drought intensification, forested valley bottoms and riparian environ-
ments warrant greater examination as potential climate-change  refugia11,56.

Shrub-steppe drought sensitivity showed complex relationships to geographic patterns of water and energy 
limitation. In shrub-steppe ecosystems, climatic water deficit generally decreases and AET increases at higher 
elevations. Somewhat surprisingly, shrub-steppe drought sensitivity increased with elevation, despite greater 
water availability at higher elevations. Given the strong relative influence of elevation in shrub-steppe models, 
one explanation is that drought sensitivity was primarily driven by high-elevation, high-productivity areas and 
that secondarily, for sites at comparable elevations, drought sensitivity increased with increasing water limita-
tion. Dwarf sagebrush showed particularly strong sensitivity to severe droughts. This vegetation community 
is relatively rare regionally (supplementary Table S1), occurring at cold, high-elevation sites with dry climate 
and low productivity. Species distribution models project that such cold upland shrublands may lose habitat 
under future  warming48. Particularly for severe droughts, shrub-steppe drought sensitivity was strongly related 
to compacted soils, suggesting that reduced infiltration of rainfall and snowmelt and/or impeded root network 
development in these areas may have exacerbated drought sensitivity. Unlike in forests, shrub-steppe drought 
sensitivity was not reduced in areas of high CTI, suggesting that valley bottoms and riparian areas did not pro-
vide drought refugia. This may be related to the intermittent nature of many streams in the semi-arid zones of 
the region, which run dry based on local climate conditions and thus would likely fail to provide subsidies of 
shallow groundwater during  droughts57.

Although this analysis revealed several clear patterns of drought sensitivity in relation to climate and land-
scape drivers, these interpretations require some caveats. Importantly, landscape drivers of drought sensitivity 
are scale-dependent. The spatial resolution of our analysis (1 km) was appropriate for a regional scale but too 
coarse to discern microclimatic effects such as those from small streams, shaded hillsides, or localized shallow 
 groundwater31. In particular, groundwater depth can be highly variable over small spatial scales and can play 
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an important role in buffering hydrologic responses to climate warming and  drought10. Additionally, the 1-km 
EVI scale integrates vegetation responses across a variety of plant functional types. Because shrublands often 
include an understory component of grasses—including invasive annual grasses such as cheatgrass (Bromus 
tectorum)—drought sensitivity patterns at a 1-km scale likely incorporated spectral effects from both shrub 
and grassland vegetation. In forests, EVI patterns were likely driven primarily by tree canopy dynamics but may 
have also incorporated understory vegetation or small non-forested inclusions (e.g., montane meadows) within 
primarily forested pixels. Future regional studies of drought sensitivity could also include nested, site-level 
analyses at higher resolutions (e.g., 30 m) to evaluate microclimatic effects and finer-scale drought-sensitivity 
patterns related to landscape metrics (e.g., topographic shading, water-table depth) that were not evident  here6,11.

We assessed drought sensitivity using relative rather than absolute declines in EVI under drought conditions. 
As such, for a given magnitude of drought-induced change in EVI, greater baseline EVI (the denominator, see 
supplementary material Sect. 1.4) would produce a smaller relative EVI change and hence a lower sensitivity 
value. This may help explain the generally low drought sensitivity values observed in western wet conifer and 
Mediterranean mixed conifer forests west of the Cascade Mountains, which have relatively high baseline EVI 
(Fig. 2). Absolute declines in EVI under drought conditions could potentially be used as a complementary metric 
to assess drought sensitivity—along with the relative declines presented here—although such an absolute metric 
would tend to understate drought effects in strongly water-limited ecosystems with extremely low baseline EVI 
(e.g., shrub-steppe ecosystems and pinyon-juniper woodlands; Fig. 2), because these ecosystems have “so little 
to lose” in terms of EVI decreases when droughts occur.

Although vegetation indices are reliable indicators of plant structural and physiological properties (e.g., ANPP 
and leaf-area  index18,23,24,37,41) and have enabled broad-scale synoptic assessments of vegetation responses to 
climate variability, remote-sensing analyses are inherently constrained by a common set of limitations. Spectral 
change is an imperfect indicator of physiological or ecological responses to  drought28, in part because physiologi-
cal responses such as stomatal closure that minimally affect leaf area may produce no discernible spectral change. 
Conversely, some drought-tolerance adaptations such as leaf shedding and changes to leaf orientation may 
produce spectral changes without any long-term adverse impacts to plant  fitness13, such that drought-tolerant 
vegetation types may show strong drought sensitivity in remote-sensing  analysis28. Indeed, productivity reduc-
tions from drought discernible by remote sensing do not necessarily imply drought-induced mortality or plant 
community vulnerability to the long-term negative effects of drought. Furthermore, drought-induced reductions 
in plant fitness—including morbidity effects that cannot be detected by remote sensing—may contribute to 
delayed mortality with varying lag times, including through drought-related disturbances such as wildfires and 
insect  outbreaks7,27,38,39. Thus, the drought sensitivity patterns explored here and in other remote-sensing-based 
studies represent only one facet of holistic drought-vulnerability analysis, which also requires field-based track-
ing of mortality events, long-term monitoring of population demographics, species composition, physiological 
traits, and drought projections under climate change.

Conclusions
Improved understanding of broad-scale drivers of drought sensitivity is critical for predicting where and when 
ecosystems will experience substantial declines in productivity under future droughts and potentially where to 
expect transitions in ecosystem types. Droughts are anticipated to intensify under climate change and recent 
severe drought in the Pacific Northwest may not be as anomalous in years to  come2,35. Our findings of elevated 
drought sensitivity in dry forests, Rocky Mountain subalpine forests, and cold upland sagebrush communi-
ties suggest these ecosystems may warrant long-term monitoring and plot-scale studies of plant physiological 
responses to drought. We identified landscape contexts with reduced drought sensitivity—such as forested valley 
bottoms and forests with low soil bulk density and high soil AWC—that may require further investigation as 
potential drought  refugia11,31,33,54–56.

The sensitivity of ecosystem productivity to drought—investigated in previous studies and here using EVI as 
an indicator of  ANPP20,23,28—may have complex relationships to long-term drought vulnerability, susceptibility 
to mortality events, and ecosystem transitions under climate change. Remotely sensed indicators of drought 
sensitivity integrate the effects of biological characteristics (e.g., drought-resistance strategies) and physical 
landscape characteristics (e.g., heterogeneous soil water availability), and climate change will affect these drivers 
to different degrees over different time-scales29. Future studies integrating drought-sensitivity analysis with long-
term post-drought monitoring may help elucidate the relationships between vegetation productivity declines 
and residual impacts from droughts, e.g., reduced reproductive success or delayed  mortality1,38. Furthermore, 
because ecosystems face interacting threats (e.g., invasive species and insect outbreaks) and shifting disturbance 
regimes (e.g., longer fire seasons), assessing drought vulnerability in concert with these changing processes can 
help guide landscape-scale management under climate change.

Methods
Study area. We assessed drought sensitivity in conifer forest and shrub-steppe biomes of the Pacific North-
west of the USA (Oregon, Washington, and Idaho). Elevation in this region ranges from sea level to approxi-
mately 4,300 m. Mean annual temperatures (1981–2010 averages) range from − 7.0  °C on mountain tops to 
13.3  °C in lowland and coastal  areas58. Mean annual precipitation (MAP) ranges from approximately 20 to 
650 cm per year. In the semi-arid regions east of the Cascade Mountains where MAP < 40 cm, natural landcover 
includes shrub-steppe ecosystems dominated by sagebrush (Artemisia species). Natural landcover in areas west 
of the Cascades or at elevations above 1200–1400 m is generally conifer forest.
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Remote sensing, landcover, and climate data. We quantified vegetation greenness using MODIS EVI 
from EarthData  Search59 at 1-km resolution for June through August, 2000 through 2016 (part 1 in supplemen-
tary material). We used only EVI pixels representing natural landcover based on the U.S. National Vegetation 
 Classification60—seven forest ecosystems and three shrub-steppe ecosystems (supplementary Table S1)—and 
excluded pixels that were influenced by disturbances such as fires or insect outbreaks or that showed long-term 
EVI trends (part 1 in supplementary material; supplementary Fig. S1).

We assessed drought conditions using the standardized precipitation evapotranspiration index (SPEI), which 
incorporates precipitation and temperature effects to represent meteorological drought conditions across time 
and  space61. Because biomes may differ in the time-scales over which they respond to  drought20, we represented 
drought conditions over three time-scales using SPEI calculated with 3-, 6-, and 12-month antecedent conditions, 
representing drought conditions for summer, winter through summer, and the entire previous year, respectively 
(part 1 in supplementary material). We defined baseline climate conditions as − 1 < SPEI < 1, moderate drought 
as − 1.5 < SPEI ≤ -1, and severe drought as SPEI ≤ − 1.5, following similar SPEI thresholds from previous  studies2,3. 
Cumulative drought exposure for each pixel was calculated using SPEI from 1990 through 2016 (part 1 in sup-
plementary material).

Drought sensitivity. We represented sensitivity to moderate and severe drought (S’mod and S’sev, respectively) 
as the percent decrease in EVI under drought conditions relative to baseline (i.e., non-drought, non-pluvial) 
conditions. We first calculated drought sensitivity for each SPEI timeframe (3-, 6-, and 12-months) and then 
calculated S’ as the maximum sensitivity across timeframes (part 1 in supplementary material). Although some 
ecologically important manifestations of drought sensitivity (e.g., below-ground physiological changes, reduced 
defense capacity against pests and pathogens) are not directly captured in EVI variability, EVI is closely linked 
to  ANPP18,23,24. Therefore, this metric of drought sensitivity represents the degree to which vegetation canopies 
exhibit spectral changes in response to drought and may indicate drought-induced productivity reductions. This 
drought-sensitivity analysis likely represents a conservative assessment of regional drought impacts because we 
did not seek to explicitly map vegetation mortality and we excluded areas affected by fires, insect outbreaks, and 
other disturbances. In some of these excluded areas, droughts could have caused vegetation mortality directly 
or may have contributed to or exacerbated fire and insect disturbances (part 1 in supplementary material)1,41,62.

Models of landscape characteristics influencing drought sensitivity. We assessed drought sen-
sitivity by ecosystem type and used boosted regression tree (BRT) models to explore influences on drought 
sensitivity of landscape characteristics including climate, topography, soil, and hydrology (Table 1). BRT models 

Table 1.  Landscape characteristics used in evaluating drought-sensitivity patterns. Notes: Pixels were assigned 
to forest or shrub-steppe models based on landcover and ecoregion. Landscape characteristics marked with † 
were removed from final models based on relative-influence values in preliminary models (see supplementary 
methods).

Landscape characteristic Units Source Native resolution

Pre-processing prior to use in 
boosted regression tree (BRT) 
models

Abbreviation used in BRT 
models

Level III ecoregion Code Omernik  ecoregions68 Vector polygons Rasterized at 1 km to match the 
grid of S’ values Not used

Landcover and ecosystem type 
(level 5 macrogroup categories, 
supplementary Table S1)

Code
U.S. National Vegetation 
 Classification60 mapped by the 
National Gap Analysis  Program69

30 m

Landcover for each 1-km pixel 
was categorized as the dominant 
(majority) category of the 30-m 
landcover within the pixel. Only 
pixels with one of the ecosystem 
types in supplementary Table S1  
were used for analysis

Ecosystem†

Elevation m GTOPO3070 30 arc-s (~ 800 m)
Resampled using bilinear inter-
polation to match the 1-km grid 
of S’ values

Elev

Actual evapotranspiration 
(1980–2009) mm AdaptWest71 30 arc-s Same resampling as for elevation AET

Climatic water deficit 
(1980–2009) mm AdaptWest71 30 arc-s Same resampling as for elevation Deficit

Soil available water capacity Volumetric fraction SoilGrids72 1 km Same resampling as for elevation Soil_AWC 

Soil bulk density kg per  m3 SoilGrids72 1 km Same resampling as for elevation Soil_BD

Groundwater-table depth m Fan et al.73 1 km Same resampling as for elevation WTD

Compound topographic index 
(CTI) Unitless Buttrick et al.36 30 m Averaged within each 1-km pixel CTI

Topographic heat-load index 
(HLI) Unitless Buttrick et al.36 30 m Averaged within each 1-km pixel 

to produce 1-km HLI HLI†

Density of topographic shad-
ing = percent of each 1-km pixel 
with HLI ≤ 0.6

Shade_dens†

Drought exposure Percent This study 1 km See supplementary methods Drought_exp
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are a machine-learning technique based on classification and regression tree models, which repeatedly split 
values of a response variable into more homogenous groups using combinations of predictor  variables63. BRTs 
are effective in modeling complex ecological systems because they accommodate continuous and categorical 
predictors, missing data, and outliers, do not require prior data transformation, and capture complex nonlinear 
 relationships64.

We constructed four independent models for each combination of drought intensity level (S’mod and S’sev) and 
biome (forest and shrub-steppe). Parameterization of BRTs was conducted using the gbm.step function in the R 
package  dismo65, with tree complexity of five and a bag fraction of 0.5 (part 1 in supplementary material). For 
each model, we performed 20 bootstrapped BRT model runs using a random sample of 10,000 pixels and aver-
aged the results. We assessed model fit based on percent deviance of the response variable (drought sensitivity) 
explained by the model and by the cross-validated correlation coefficient based on tenfold cross validation in the 
gbm.step function. We evaluated the roles of landscape variables in shaping spatial patterns of drought sensitiv-
ity within each biome based on relative influence (i.e., the importance of each predictor in explaining drought 
sensitivity patterns) and the shapes of partial-dependence plots, which depict drought sensitivity as a function 
of each landscape characteristic while accounting for the average effects of all other predictors in the  model64.

We first constructed preliminary BRT models with 11 predictors: elevation, climatic water deficit, AET, soil 
bulk density, soil AWC, groundwater-table depth, CTI, topographic heat-load index (HLI), density of topographic 
shading, drought exposure, and ecosystem type (Table 1). Correlations between predictors were generally weak 
to moderate (supplementary Table S2). Three predictors (HLI, density of topographic shading, and ecosystem 
type) had low relative influence in preliminary models (supplementary Fig. S2) and were removed to create more 
parsimonious final models. All data processing and modeling were conducted in the R statistical  environment66. 
Geospatial data, metadata, and data-processing scripts are available in a U.S. Geological Survey data  release67.

Data availability
All data and code (R processing scripts) used in this analysis are available in a U.S. Geological Survey data 
 release67.
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