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Abstract

As most regions of the earth transition to altered climatic conditions, new methods are

needed to identify refugia and other areas whose conservation would facilitate persis-

tence of biodiversity under climate change. We compared several common approaches

to conservation planning focused on climate resilience over a broad range of ecological

settings across North America and evaluated how commonalities in the priority areas

identified by different methods varied with regional context and spatial scale. Our results

indicate that priority areas based on different environmental diversity metrics differed

substantially from each other and from priorities based on spatiotemporal metrics such

as climatic velocity. Refugia identified by diversity or velocity metrics were not strongly

associated with the current protected area system, suggesting the need for additional

conservation measures including protection of refugia. Despite the inherent uncertain-

ties in predicting future climate, we found that variation among climatic velocities

derived from different general circulation models and emissions pathways was less than

the variation among the suite of environmental diversity metrics. To address uncertainty

created by this variation, planners can combine priorities identified by alternative metrics

at a single resolution and downweight areas of high variation between metrics. Alter-

nately, coarse-resolution velocity metrics can be combined with fine-resolution diversity

metrics in order to leverage the respective strengths of the two groups of metrics as

tools for identification of potential macro- and microrefugia that in combination maxi-

mize both transient and long-term resilience to climate change. Planners should compare

and integrate approaches that span a range of model complexity and spatial scale to

match the range of ecological and physical processes influencing persistence of biodiver-

sity and identify a conservation network resilient to threats operating at multiple scales.
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1 | INTRODUCTION

As most regions of the earth transition to altered climatic conditions

in the coming decades (Mora et al., 2013), climate-driven shifts in

biomes, species, and ecosystem processes will make conservation

plans based on current patterns of biodiversity less effective

(Pressey, Cabeza, Watts, Cowling, & Wilson, 2007). Data commonly

used in conservation planning, such as the distributions of ecological

communities or land cover types, may lose efficacy as surrogates for

their component species as those species respond individualistically

to climate change. This problem has stimulated a search for new

types of metrics that can better inform conservation planning under

climate change.

To be effective in the face of climate change, networks of con-

servation areas must protect climatic refugia, habitats that compo-

nents of biodiversity retreat to, persist in, and potentially expand

from under changing climatic conditions (Keppel et al., 2012). More

generally, planners need to prioritize conservation of areas that max-

imize landscape-level adaptive capacity, that is, areas whose conser-

vation would disproportionately facilitate persistence of biodiversity

and ecosystem function under climate change. The refugia concept

is scale-dependent, in that macrorefugia (areas where broad-scale cli-

mate is suitable for persistence) are distinct from microrefugia (small

areas with locally favorable environments within otherwise poten-

tially unsuitable climates) (Reside et al., 2014).

The many approaches that have been suggested for identifying

refugia (Table S1) can be distinguished based on three information

axes (space, time, and species ecology (or “self” sensu) Bellard, Ber-

telsmeier, Leadley, Thuiller, & Courchamp, 2012). Approaches that

delineate potential refugia by identifying areas of high environmental

diversity consider variation across space (Ackerly et al., 2010; Ash-

croft, Gollan, Warton, & Ramp, 2012). In contrast, approaches based

on climatic velocity consider both spatial and temporal information

(Figure 1). Climatic velocity, a metric based on either historical or

projected future climate, estimates the rate at which organisms must

move across the surface of the earth to stay within similar climatic

conditions (Carroll, Lawler, Roberts, & Hamann, 2015; Loarie et al.,

2009). Areas with low projected climatic velocities may act as refugia

because the species in those areas will have to move only short dis-

tances to track changes in climate. Lastly, metrics such as biotic

velocity (the rate at which organisms must move to stay within the

climatic niche of their species) additionally consider the third axis

(species-specific ecological information) (Carroll et al., 2015; Ordonez

& Williams, 2013).

The pros and cons of using different types of data to identify

refugia hinge in part on the trade-off between model uncertainty

and complexity (here defined based on conceptual and computa-

tional complexity and the number and types of input data required

rather than by spatial and temporal resolution or other factors). In

theory, metrics derived from climatic niche models or mechanistic

viability models (Keith et al., 2014), which integrate all of the three

information axes described above, would most accurately identify

locations of species refugia (Figure 1). However, the complexity of

these models also brings increased model uncertainty, as well as data

requirements that may limit their application to a subset of a region’s

biota. Additionally, use of a nonspecies-specific metric such as cli-

matic velocity may allow a more comprehensive analysis, and may

provide information on the degree of threat to locally adapted popu-

lations rather than species (Carroll et al., 2015).

Use of environmental diversity metrics represents an even sim-

pler, and thus potentially more generalizable, approach to identifying

potential refugia. Topographic diversity (topodiversity) may be useful

for identifying areas where a heterogeneous physical environment

(e.g., steep elevation gradients or diverse aspects) increases the likeli-

hood that species will be able to find nearby suitable habitat as cli-

mate changes. Species distributions, communities, ecosystems, and

broader patterns of biodiversity are clearly influenced by abiotic dri-

vers such as soils, geology, and topography. Stein, Gerstner, and

Kreft (2014), in a meta-analysis of 192 studies, found that hetero-

geneity in land cover, vegetation, climate, soil, and topography were

all positively correlated with species richness, with vegetation and

topographic heterogeneity showing particularly strong associations.

Defini�ons of metrics used in this study
Topodiversity: Degree of varia�on, within a spa�al neighborhood around each cell (pixel), in 

eleva�on or heat load index (a metric based on aspect and slope). 

Land facet diversity: Diversity, as measured by the Gini-Simpson index, which represents the 

probability that two cells from the neighborhood of interest represent different classes of land 

facet types based on soil order, eleva�on, landform, and heat load index. 

Ecotypic diversity: Gini-Simpson index values derived from an ecotype classifica�on based on 

climate, landform, lithology, and landcover type.

Current clima�c diversity: Degree of varia�on, within a spa�al neighborhood around each cell, 

in climate represented as a mul�variate distance based on 11 bioclima�c variables. 

Clima�c velocity: Distance in mul�variate climate space between a cell and the nearest cell with 

matching climate in the future. 

F IGURE 1 Categorization and definition of a selection of
alternative metrics proposed for use in refugia identification in terms
of their use of spatial or spatiotemporal information and use of
nonspecies-specific (coarse-filter) or species-specific (fine-filter) data.
A variety of more complex methods and metrics for refugia
identification are not shown in the figure
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An approach in which conservation priorities are based on abiotic

land classifications and associated environmental diversity metrics

has been termed “Conserving Nature’s Stage” (Anderson et al., 2015;

Beier, Hunter, & Anderson, 2015; Comer et al., 2015; Lawler et al.,

2015). This approach is motivated by several premises: (i) physical

habitat types are effective coarse-filter (nonspecies-specific) surro-

gates for biological diversity; (ii) the influence of soils, geology, and

topography in creating habitat variation is likely to persist as climates

change; (iii) physical habitat data are more robust to uncertainty than

metrics based on future climate projections, which vary dependent

on the atmosphere-ocean general circulation model (AOGCM) and

emission scenario considered; and (iv) use of physical habitat data

facilitates planning because these data are easier and cheaper to

develop than spatiotemporal metrics (Beier, Hunter, et al., 2015).

This approach, in addition to prioritizing areas of high environmental

diversity, may also seek to ensure adequate representation of all

physical habitat types (“land facets”, i.e., land classifications derived

from soils and topography; Figure 1) in a conservation network,

based on the hypothesis that protecting a diversity of physical habi-

tat types will foster a diversity of biota in the future, albeit different

biota than those areas would protect today (Beier, Hunter, et al.,

2015). Although individual sites may not function as refugia in the

typical sense under this hypothesis, the conservation network as a

whole is hypothesized to be resilient in terms of its ability to main-

tain components of biodiversity under climate change (Anderson

et al., 2015). Consideration of representation goals also helps fulfill

the long-recognized principle that priority areas should be well dis-

tributed across the landscape (Scott et al., 2001).

Recent reviews have suggested that planners use alternative

metrics that span a range of complexity to overcome the shortcom-

ings of individual approaches (Garcia, Cabeza, Rahbek, & Araujo,

2014; Gillson, Dawson, Jack, & McGeoch, 2013). Many previous

studies have used environmental diversity data along with spa-

tiotemporal metrics as part of a multi-objective prioritization process

(Table S1). Game, Lipsett-Moore, Saxon, Peterson, and Sheppard

(2011) developed a national climate adaptation strategy for Papua

New Guinea that sought to simultaneously capture areas with (i) low

dissimilarity between current and future environmental space, (ii)

high environmental heterogeneity, and (iii) a diversity of geophysical

habitat types. Ashcroft et al. (2012) identified a network of refugia

in New South Wales, Australia using metrics based on topoclimate,

climatic stability, and isolation from the matrix. Groves et al. (2012)

suggested an approach that combined representation of geophysical

types, protection of refugia as identified from climate data and topo-

diversity, and conservation of habitat connectivity. Gillson et al.

(2013) suggested that planners use a suite of modeling methods

including both species-based models and those based on representa-

tion of physical habitat.

Reside et al. (2014) identified refugia based on climatic velocity,

species-specific climatic niche models, compositional-turnover modeling

(Ferrier, Manion, Elith, & Richardson, 2007), areas of stable vegetative

productivity during drought events (“greenspots”; Mackey et al., 2012),

and areas of connectivity between current and future refugia. Tingley,

Darling, and Wilcove (2014) proposed the use of conservation targets

based on natural elements unaffected by climate change (e.g., physical

habitat types) and locations with low climatic velocity. Lastly, Schmitz

et al. (2015) proposed a framework which integrated six objectives: (i)

protect current patterns of biodiversity, (ii) forecast future patterns of

biodiversity, (iii) maintain ecological processes, (iv) maintain and restore

ecological connectivity, (v) protect climatic refugia, and (vi) protect the

“ecological stage” (physical habitat types).

While the metrics considered here can be used to suggest poten-

tial refugia, we cannot test their ability to predict the location of bio-

tic refugia under future climates, due in part to irreducibly uncertain

parameters such as the rate of future anthropogenic emissions. Our

goal is to compare these two types of widely used metrics rather

than to compare their accuracy with that of more complex metrics

such as species niche models. Ultimately, the most relevant type of

metric and resolution of data will depend on the goals and spatial

scale of the planning effort.

Although the use of environmental diversity metrics in planning

appears promising in principle, we still know little about the origins

and implications of the commonalities and contrasts between alter-

native metrics. In this study, we compared prioritization approaches

that targeted areas of high environmental diversity or low climatic

velocity, either with or without consideration of how these values

were distributed across landscape types. Although we focus on

North America due to our involvement in conservation planning

efforts there, we hypothesize that our general conclusions will be

transferable to other continents.

Specifically, we asked the following questions:

1. How different are solutions (networks of conservation priority

areas) based on alternative metrics, and are the patterns of con-

trasts correlated with regional characteristics such as elevation,

latitude, temperature, or precipitation?

2. Does the ability of simpler metrics to serve as surrogates for

more complex metrics vary across scales, and does the additional

goal of ensuring priorities are represented across landscape types

increase or decrease these contrasts?

3. What level of uncertainty characterizes metrics such as velocity

which are based on climate projections, and how does this uncer-

tainty compare with variation among diversity metrics?

4. How do solutions that capture both microrefugia (identified using

high-resolution environmental diversity metrics) and macrorefugia

(identified using coarser-resolution velocity metrics), and ensure

that such areas are well distributed across a spectrum of land-

scape types, compare in terms of efficiency and overlap with

solutions based on fewer objectives?

Although alternative approaches to climate-aware conservation

planning have been proposed previously, they have not been com-

pared across a range of ecoregions in order to draw general conclu-

sions concerning how surrogate performance varies with ecological

context. Our results contribute to a better understanding of when

and how to use simple and more complex metrics for identifying
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refugia, and help build an evidence-based foundation for develop-

ment of systematic conservation planning focused on climate resili-

ence and adaptive capacity.

2 | MATERIALS AND METHODS

2.1 | Comparison of environmental diversity and
velocity metrics

We developed and compared six metrics (elevational diversity,

heat load index [HLI] diversity, current climatic diversity, ecotypic

diversity, land facet diversity, and backward climatic velocity; Fig-

ure 1, Table S2) that have been proposed as tools for assessing land-

scape-level adaptive capacity and vulnerability.

We derived the metrics across North America (Fig. S1), to draw

more comprehensive and generalizable conclusions by comparing

metrics across a diverse set of ecoregions that vary widely in their

topographic and climatic attributes. We also sought to evaluate how

the ability of simpler metrics to serve as surrogates for more com-

plex metrics varied across scales. To support this evaluation, the six

diversity metrics were derived at three resolutions (1, 3, and 9 km)

and three window widths (3, 9, and 27 km). Climatic velocity, which

lacks a window extent parameter, was developed at four resolutions

(1, 3, 9, and 27 km).

The diversity metrics are examples of neighborhood or “moving

window” metrics based on summary statistics derived from the set of

cells within the spatial neighborhood of each focal cell. In contrast, the

velocity metric is based on a nearest-neighbor function which searches

over the entire extent of the data to identify the most spatially proxi-

mate cell that “matches” the focal cell based on the attribute of inter-

est (Carroll et al., 2015; Hamann, Roberts, Barber, Carroll, & Nielsen,

2015). Diversity metrics based on larger window extents were more

analogous to velocity in this respect. We therefore focused primarily

on the comparison of velocity against diversity metrics with the largest

window extent (27 km) with a resolution (1 km) that matched that of

the highest resolution velocity metric.

2.2 | Topography-based metrics: elevational and
HLI diversity

Elevation data for North America were assembled from SRTM v4.1

(Farr et al., 2007) below 60°N latitude, and ASTER GDEM v2 (ASTER

GDEM Validation Team, 2009) above 60°N. Data were resampled to

100 m resolution from an original resolution of 1 arc-second (~30 m)

(ASTER) to 3 arc-second (~90 m) (SRTM). Higher resolution (30 m)

SRTM data (v4.2) are now available, and would be preferable for anal-

yses at regional extents. However, 30 m resolution diversity analyses

at continental extents are computationally challenging, and 90 m

SRTM v4.1 data resampled to 30 m showed high (>.99) correlation

with 30 m STRM v4.2 data.

We also converted elevation data to HLI (McCune & Keon, 2002).

HLI, a metric based on slope, aspect and latitude, is an estimate of the

potential annual direct incident radiation at a location that is related to

microclimatic diversity in a different manner than is elevation. We

derived elevational and heat load diversity values using a form of Rao’s

quadratic entropy, by measuring the mean Euclidean environmental

distance (e.g., elevation or HLI) between all pairs of cells within a spa-

tial neighborhood defined by the moving window of the specified

extent (3, 9, or 27 km) (Ackerly et al., 2010; Rao, 1982).

2.3 | Current climatic diversity

The HLI diversity metric effectively assumes that heterogeneous

topography will result in heterogeneous climates. Alternately, one

can directly assess the level of modeled climatic heterogeneity

within a spatial neighborhood under current climatic conditions.

Although current climatic diversity is characteristic of a specific time

period, we characterize it as a spatial rather than spatiotemporal

metric because it does not incorporate a rate of change over time.

We calculated a current climatic diversity metric using climate data

for a recent 30-year climate normal period (1981–2010), interpolated

to 1 km resolution using the CLIMATENA software (Wang, Hamann,

Spittlehouse, & Carroll, 2016). CLIMATENA climate data are based on

climate rasters developed by the PRISM project, which uses a

regression approach to interpolate weather station data based on

location, elevation, coastal proximity, topographic facet orientation,

vertical atmospheric layer, topographic position, and orographic

effectiveness of the terrain (Daly et al., 2008). CLIMATENA downscales

PRISM grids using a lapse rate dynamically developed based on local

grids for each monthly temperature and precipitation variable.

We used 11 secondary bioclimatic variables more directly related

to ecological factors (Table S3), which are calculated by the CLIMATENA

software from the monthly temperature and precipitation data

(Wang, Hamann, Spittlehouse, & Murdock, 2012). Wang, Hamann,

et al. (2012) and Wang, Hamann, Spittlehouse, and Carroll et al.

(2016) identified key bioclimatic variables based on the previous

studies concluding that these variables were important in ecological

models (e.g., models separating forest ecosystems in British Colum-

bia and the western United States; Rehfeldt, Crookston, Warwell, &

Evans 2006; Wang, Campbell, O’Neill, & Aitken, 2012).

We used principal components analysis to reduce the dimension-

ality of the 11 climate variables, which eliminated collinearity for

subsequent stages of the analysis. Our Rao’s quadratic entropy met-

ric was based on multivariate Euclidean climate distance using the

first 4 PCA axes, which accounted for 97% of total variance in the

11 climate variables.

2.4 | Class-based metrics: land facet and ecotypic
diversity

We also assessed environmental diversity based on categorical vari-

ables which had been used to classify the landscape into distinct

units (Table S4). Landscape units derived from topographic and soil

or geologic data have been termed “land facets” (Beier & Brost,

2010). We developed data categorizing the North American conti-

nent into land facets at 100 m resolution and aggregated the data to
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the 1, 3, and 9 km resolutions based on the majority of 100 m

classes within the larger grid cells. Land facet classes were derived

from categorical variables representing elevation and HLI (as

described above), as well as landform and soil order (see

Appendix S1 for details of classification system).

As an alternative to a classification that relies purely on physical

features, we used ecological land units (ELU), which Sayre et al.

(2014) derived from growing degree days, an aridity index, landform,

lithology, and land cover type. We derived land facet and ecotypic

diversity using the Gini-Simpson diversity index (Jost, 2006). Com-

parison of land facet and ecotype diversity provides information on

how diversity-based priorities differ when derived from two systems

of land-type classification, one based purely on physical features and

a second that also incorporates climate and land cover data.

2.5 | Climatic velocity

The velocity of climate change, as originally proposed by Loarie et al.

(2009), is derived by dividing the temporal rate of projected climate

change by the rate of climate variability across a spatial neighbor-

hood. Here we used an alternative velocity algorithm that extends

the search for climate refugia across the entire continent to directly

estimate the distance between a location and the nearest location

with similar climate in the future (Hamann et al., 2015). Future pro-

jected temperature and precipitation were calculated as anomalies

from the current (1981–2010) reference period to the future 2071–

2100 period (hereafter “2080s”), based on an ensemble mean of 15

representative CMIP5 AOGCMs included within CLIMATENA. Anomaly

grids were downscaled via local regression and the difference was

added to the baseline climate normal data to arrive at the final cli-

mate surface (Wang et al., 2016).

We used climate data based on the first two axes of the principal

components analysis of 11 climate variables described above. We used

equally spaced intervals of 0.25 PCA units to divide current and future

climate space into multivariate bins. To eliminate artifacts due to bin

boundaries, we incrementally offset bin boundaries over 100 repli-

cated velocity calculations and averaged the results. For each unique

climate type (bin), we identified cells (pixels) within that type under

both current and projected climates. Then, we used fast approximate

nearest neighbor algorithms (from R package yaImpute; Crookston &

Finley, 2008) to identify, for each future cell, the nearest cell of the

same type under current climates. This metric, termed backward cli-

matic velocity, represents the distance and rate at which organisms

adapted to a location’s future climate will need to move to reach that

location. As such, it represents a measure of a location’s ability to

serve as a refugium (Carroll et al., 2015). In contrast, the more typically

encountered climatic velocity metric, forward velocity, is more rele-

vant to measuring threats to organisms themselves, as it represents

the rate at which an organism currently at a location must move to find

future suitable climate. For use in identifying networks of conservation

priority areas (as described below), we used the negative logarithm of

velocity to create a metric comparable to the diversity metrics, in that

higher values identified areas with higher refugia potential.

2.6 | Testing correlation and concordance between
metrics

Before assessing the spatial concordance between priority areas

identified by alternative metrics, we first evaluated the correlation

between the metrics themselves using several methods. Firstly, we

calculated the Spearman correlation coefficients between the six

metrics, which had been calculated across a range of resolutions and

analysis windows. Secondly, we divided the range of velocity values

into quantiles, and evaluated whether the correlation between diver-

sity and velocity varied between low and high velocity areas. We

used generalized additive models (GAM) to evaluate how the six

metrics varied with respect to elevation.

We created linear regression models with climatic velocity as the

dependent variable and the diversity metrics as independent vari-

ables. We then performed commonality analysis (Ray-Mukherjee

et al., 2014) on the linear regression models to evaluate the unique

and shared contributions of each of the diversity metrics to explain-

ing patterns of velocity. We also tested the correlation between

velocities derived from different AOGCMs and emissions scenarios

(representative concentration pathways, RCP), to evaluate the

degree of uncertainty originating from these factors. For this subset

of analyses, we also compared the more distant future projection

(2071–2100, or “2080s”) used throughout the study with a near

future projection (2041–2070, or “2050s”).

2.7 | Identification of priority area networks using
the ZONATION software

The degree of correlation between environmental diversity and

velocity metrics provides important information but does not directly

translate to applications where networks of priority areas (here ter-

med “solutions”) are selected based on systematic conservation plan-

ning principles (Margules & Pressey, 2000). Therefore, we also

compared and contrasted alternative solutions based on diversity

and velocity metrics (Table 1).

We identified solutions using the ZONATION software (Moilanen,

2007; Moilanen et al., 2005). ZONATION produces a hierarchical rank-

ing of conservation priorities over the entire landscape, based on

principles of complementarity. Lowest ranks are given for grid cells

whose deletion minimally effect the total conservation value retained

within the solution because they do not contain a high value of any

metric. Highest ranked cells include the highest values of multiple

metrics. Areas with highest rank would be retained longest as a suc-

cessively smaller proportion of the landscape is retained within a

protected area system.

We used ZONATION’s core-area-based prioritization option, which

emphasizes solutions that collectively include high-quality locations

for all conservation features. Core-area ZONATION is most appropriate

when, as here, the goal is to protect all conservation targets rather

than assume trade-offs between targets (Moilanen, 2007). Although

ZONATION runs used a resolution of 3 km for computational feasibility

at the continental analysis extent, we found that solutions were
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similar at varying resolutions (e.g., >.97 correlation between 3 and

9 km resolutions).

We developed four types of solutions (numbered as Groups 1–4

in Table 1): (i) single-objective solutions, which sought to maximize

the total value of a single diversity or velocity-based metric (e.g.,

protect potential areas of highest elevational diversity or low veloc-

ity); (ii) multi-objective solutions, which sought to simultaneously

capture high value areas based on several diversity or velocity met-

rics; (iii) representation-based solutions, which sought to maximize

areas of high diversity or low velocity within all landscape types (cli-

matic and/or land facet types); and (iv) multiscale representation

solutions, which sought to maximize areas of high diversity or low

velocity (potential macrorefugia) within all landscape types, while

also prioritizing potential microrefugia, that is, areas with high topo-

graphic diversity below the grain of the solution.

The value of systematic conservation planning software lies in

optimizing priorities based on multiple conservation features. In real-

world planning contexts, ZONATION solutions would not be based on a

single feature because this set of priority areas could be identified

using simpler tools. We include single-objective solutions in this

comparison because (i) they allow a comparison with multi-objective

solutions using identical methods; and (ii) they simplify calculations

which seek to identify the highest value areas in each of many

administrative units (e.g., ecoregions).

2.8 | Ecoregions as strata and climatic regions as
representation targets

We opted to stratify representation targets by ecoregion (CEC,

1997) to approximate the typical extent of planning processes and

allow us to evaluate how the pattern of contrasts between alterna-

tive solutions varied by ecoregion (n = 182; Fig. S2a). We

characterized this pattern of contrasts based on each ecoregion’s

mean and standard deviation of elevation, latitude, annual tempera-

ture, annual precipitation, and continentality (expressed as the differ-

ence between mean temperature of coldest and warmest month).

For a subset of solutions, we used climatic regions as a represen-

tation target. The climatic regions were delineated using a maximum-

likelihood-based unsupervised classification of North America into

495 regions based on the first four principal components of a PCA

based on 11 bioclimatic variables (Table S3) under current climate

(Fig. S2b). Representation by climatic region distributed low-velocity

priority areas (potential macrorefugia) throughout current climatic

space, with the goal of conserving biota adapted to all current

climates.

2.9 | Comparison of priority area solutions

We evaluated the similarity of ZONATION solutions based on two

metrics: (i) the cross-correlation coefficient (Goodchild, 1986)

between rasters representing the rank (priority) assigned in the

ZONATION results to each cell of the landscape, and (ii) the Species

Accumulation Index (SAI; Rodrigues & Brooks, 2007), which com-

pares the amount of a feature captured in solutions focused on the

feature itself with the amount captured in solutions based on alter-

nate features (surrogates). SAI is calculated from the ratio (S–R)/

(O–R), with S being the amount of a metric captured within the

surrogate-based solution, O being the optimum value captured in

the feature-based solution, and R being the mean value captured in

a randomly selected solution (Beier et al., 2015). SAI ranges from

negative infinity to 1, with negative SAI corresponding to a worse

than random result, 0 indicating random performance, and positive

SAI representing a measure of effectiveness (Beier & De Albu-

querque, 2015).

TABLE 1 Goals for alternative solutions (networks of conservation priority areas) identified using the ZONATION software

Solution Target Spatiotemporal Multi-objective Representation-based

Group 1—Single objective solutions

1 Areas of high elevational diversity

2 Areas of high heat load diversity

3 Areas of high current climate diversity

4 Areas of high ecotype diversity

5 Areas of high land facet diversity

6 Areas of low backward climatic velocity 9

Group 2—Multi-objective solutions

7 Areas maximizing 1–6 above 9 9

Group 3—Representation-based solutions

8 Areas of low backward climatic velocity represented across climate types 9 9 9

9 Areas of high land facet diversity represented across land facet types 9 9

10 Areas fulfilling both 8 and 9 above 9 9 9

Group 4—Multiscale representation-based solutions

11 Areas fulfilling both 8 and 9 above, using within-cell diversity 9 9 9
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We also created linear regression models to evaluate the ability

of ecoregion-level characteristics (elevation, latitude, temperature,

precipitation, and continentality) to explain the cross-correlation

between the landscape rankings produced by alternate solutions.

Lastly, we evaluated the performance of the current system of pro-

tected areas in North America (IUCN categories 1(strict nature

reserve)—6 (sustainable use area); C.E.C., 2010) in representing areas

prioritized in the ZONATION solutions by measuring the mean rank of

cells within and outside of the current protected area system.

3 | RESULTS

3.1 | Commonalities and contrasts between metrics

Elevational, HLI, and current climatic diversity formed a group of clo-

sely correlated metrics (�x of Spearman’s rank correlation (q) = .89

across all resolutions and window extents; Fig. S3). Land facet diver-

sity was moderately correlated with these three metrics (�x of

q = .69). Ecotypic diversity was the most distinct of the diversity

metrics (�x of q = .55 with all other diversity metrics). The diversity

metrics showed increased correlation among themselves as grain

and/or window extent increased (Fig. S3).

Rankings derived from diversity metrics based on continuous

variables were relatively robust to choice of scale (both resolution

and window extent) (Fig. S4). However, diversity metrics based on

categorical variables (ecotypic and land facet diversity), although

robust to choice of resolution, showed only moderate correlation

(q ≥ .53) between values measured at different window extents, due

to influence of rare landscape types on diversity values. The contrast

between backward climatic velocity and the diversity metrics was

greater than any contrast among the diversity metrics themselves. At

1 km resolution and 27 km window extent, velocity was correlated

similarly with all diversity metrics (q = .36–.40) except land facet

diversity (q = .29).

3.2 | Sensitivity of velocity values to contrasts
between AOGCMs, RCPs, and time periods

Velocity metrics derived from different AOGCMs were relatively

highly correlated (�x of q = .74; Fig. S5). This level of correlation is

greater than that between the diversity metrics as a whole (�x of

q = .70). Correlation between AOGCMs increased slightly between

the near future and distant future (2050s and 2080s) projections as

the warming signal came to dominate the “noise” of AOGCM model

uncertainty (Fig. S6).

Correlation between velocity metrics based on different RCPs

was also relatively high (�x of q = .85; Fig. S6), although correlation

decreased between near future and distant future projections. Corre-

lation between rankings based on near-future and distant-future

velocity was relatively high (�x of q = .88), but contrasts between

time periods were greater for the extreme emissions scenario (RCP

8.5) than for the moderate scenario (RCP 4.5).

3.3 | Contrasting relationship of diversity and
velocity metrics to elevation

Low-elevation areas, which were generally also the flattest areas (q

of elevation and slope = .53 at 1 km resolution), showed the lowest

values for all metrics (Figure 2). Although all diversity and velocity

metrics showed a broadly similar relationship with elevation below

2,000 m, they diverged at higher elevations. Elevational and HLI

diversity showed the strongest positive correlation with elevation

across all elevation values (Figure 2a), suggesting that, at least in

North America, the highest mountain regions are also most topo-

graphically diverse. Ecotype and land facet diversity showed lowest

correlation with elevation. The relationship of current climatic diver-

sity with elevation was intermediate to that of the two previous

groups. The refugia metric derived from backward climatic velocity

showed correlation with elevation similar to those shown by current

Prevailing
winds

GRASSLAND

Rain
shadow

FORESTLow forward
climatic velocity

Low backward
climatic velocity

High
current
climatic

diversity

High
topodiversity

High ecotypic
diversity

(b)(a)

0 2000 4000

0

2

4

6

G
A

M
 fu

nc
tio

n 
of

st
an

da
rd

iz
ed

 v
ar

ia
bl

e

Elevation (m)

Elevational diversity
Heat load diversity
Current climatic diversity
Metric based on backward climate velocity
Metric based on forward climate velocity
Ecotypic diversity
Land facet diversity 

F IGURE 2 Contrasts between diversity and velocity metrics in their relationship with elevation zones: (a) generalized additive model of
relationship between metrics and elevation across North America, (b) conceptual figure indicating elevational zones showing high values of the
various metrics. Forward climatic velocity is shown for comparative purposes but is not further analyzed in the study

4514 | CARROLL ET AL.



climatic diversity, but with greater emphasis on mid-elevations

(Figure 2).

3.4 | Scale dependent correlation between diversity
and velocity

Correlation between diversity and velocity also varied between low

and high velocity areas. The rank correlation of elevational diversity

and negative log velocity at 1 km resolution and 27 km window

extent was .38 overall, but increased to .60 for those areas with

velocity values of < 5 km/year (Fig. S7). Maximum correlation with

velocity was lower for diversity metrics with coarser resolutions or

smaller window extents (Fig. S7).

We applied commonality analysis (Ray-Mukherjee et al., 2014) to

a regression of climatic velocity on the diversity metrics, both for

the full range of velocity values and for refugial areas with velocities

of <2.25 km/year. This threshold was chosen because such refugia

represented a proportion of the continent approximately equivalent

to the extent of the current protected areas system (10.2%). For a

regression based on all areas, current climatic diversity showed

greatest unique contribution to the model, but most of the model’s

explanatory power was shared between elevational, HLI, and current

climatic diversity (Fig. S8a). The unique contribution of elevational

diversity increased and that of current climatic diversity decreased

when the regression focused on variation within low velocity refugia

(<2.25 km/year) (Fig. S8b). Model fit was low (r2 < .19) for both

models.

3.5 | Comparison of ZONATION solutions

For single-objective solutions (Fig. S9), both the species accumula-

tion index (SAI) values (Figure 3) and cross-correlation of priorities

(rank of removal from ZONATION solution; Fig. S10) between eleva-

tional, HLI, and current climatic diversity were high (�x = .87 and .81,

for SAI and correlation, respectively). In contrast, priorities based on

ecotypic and land facet diversity had only moderate SAI and correla-

tion (�x = .58 and .57, respectively) with other diversity metrics. Prior-

ities based on climatic velocity showed low SAI and correlation

(�x = .34 and .39, respectively) with all diversity metrics. A multi-

objective solution based on the six diversity and velocity metrics

(Figures 4 and Fig. S11) performed moderately well for all targets

(�x = .55 and .65 for SAI and correlation, respectively). Note that,

unlike cross-correlation values, SAI values are not symmetrical in

that the surrogacy value of metric A for metric B may not equal that

of metric B for metric A (Figure 3).

Solutions designed to capture areas of low backward climatic

velocity represented across climate types (solution 8; Table 1) corre-

lated poorly (q = .27) with priorities designed to capture areas of

high land facet diversity represented across land facet types (solution

9) (Fig. S11). Additionally, use of landscape-level representation tar-

gets (climate zones or land facet types) or strata (ecoregions)

resulted in artificially high priorities at type or strata boundaries.

However, a multi-objective solution based on both climatic and

land facet representation goals (solution 10) correlated moderately

well with priorities based on climate types or land facet types alone
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(q = .61 and .75, respectively). Multiscale priorities based on both cli-

matic and land facet representation goals, but incorporating within-

cell land facet diversity (solution 11), were highly correlated with an

analogous solution (solution 10) based on between-cell diversity

(q = .89).

Linear regression models of the effect of ecoregional characteris-

tics on the degree of correlation between priorities based on eleva-

tional diversity and velocity suggested that correlation was higher in

lower elevation ecoregions with greater standard deviation in eleva-

tion (e.g., mountainous coastal regions). However, although the ele-

vational variables were significant in the model (p < .01, n = 182

ecoregions), model r2 was low (.07). The ecoregional characteristics

evaluated here were not significant in predicting correlation of priori-

ties between climatic and land facet representation goals (solutions

8 and 9).

3.6 | Performance of current protected area system

Protected areas in the dataset we used represented 10.2% of North

America. The mean rank of the protected area system ranged from

.52 to .59 across the various ZONATION solutions (Fig. S12). This sug-

gests that the tendency of both protected areas and areas of high

diversity to be located at higher elevations is not in itself sufficient

to ensure that high diversity areas are captured within the current

protected area system. Because many nonecological factors influ-

enced where parks were created in the past, the overlap between

existing protected areas and any systematic planning solution tends

to be low. However, even a small difference between metrics is of

practical significance given the large areas considered and the large

socioeconomic costs of new park designation. Priorities based on

elevational, HLI, and current climatic diversity were captured to a

greater degree in the current system of protected areas (mean rank

within protected areas of .58–.59) (Fig. S12). In contrast, priorities

based on ecotypic and land facet diversity and velocity were less

well captured within protected areas (mean rank within protected

areas = .54, .56, and .53, respectively). No metrics had mean rank

values below .5, which would reflect conservation targets being

found disproportionately outside protected areas. The differences in

mean rank between the metrics are consistent with previous con-

trasts between metrics in terms of their relationship with elevation

(Figure 2).

4 | DISCUSSION

Although many approaches have been suggested for identifying refu-

gia and other areas whose conservation would facilitate species per-

sistence under climate change, we still know little about the origins

and implications of the commonalities and contrasts between alter-

native metrics. We compared several widely used approaches across

a broad range of ecological settings in North America to determine

how commonalities in the priority areas identified by different meth-

ods varied with ecological context and spatial scale. We found that

priority areas based on different environmental diversity metrics dif-

fered substantially from each other and from priorities based on cli-

matic velocity metrics. Our results highlight the need to better

understand the implications of these contrasts for conservation plan-

ning under climate change.

The environmental diversity metrics that we considered fell into

three groups in terms of their correlation with elevation (Figure 2).

Priorities developed from the two topographic diversity metrics

increased focus on high-elevation areas, which are already overrep-

resented in protected areas (Joppa & Pfaff, 2009; Scott et al., 2001;

Tingley et al., 2014). In contrast, priorities derived from categorical

landscape units rather than continuous variables distributed conser-

vation priorities more broadly across elevation zones (Figure 2). Land

facet and ecotypic diversity were similar in this effect, despite being

based on different landscape classifications.

This contrast is partly due to both the incorporation of additional

nontopographic inputs (edaphic, climatic, and land cover data) into

the categorical metrics. Additionally, the ecologically informed class

boundaries used to categorize the data, and the different index by

which diversity was measured for categorical variables, contributed

to shifting high diversity areas toward lower elevations. For example,

low- to mid-elevation areas with high ecotypic diversity might

include an ecotone originating from precipitation thresholds govern-

ing the shift from forest to grassland ecosystems (Figure 2b). How-

ever, the ability of such landscape classifications to predict refugia

depends in part on whether these thresholds retain their relevance

to biota under future climates. Metrics such as biotic velocity that

incorporate future biotic thresholds avoid this assumption at the cost

of increased model complexity.

F IGURE 4 Conservation priority ranking for North America
based on a multi-objective ZONATION solution (scenario 7; Table 1)
capturing areas of high importance based on six diversity and
velocity metrics [Colour figure can be viewed at
wileyonlinelibrary.com]
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Both current climatic diversity and backward climatic velocity

showed an intermediate relationship with elevation when com-

pared to the two previous groups (Figure 2). These metrics are

influenced by topography (due to use of topographic data in the

statistical downscaling process) but also by broad-scale factors

such as prevailing circulation patterns, coastal proximity, and oro-

graphic effectiveness of the terrain (Daly et al., 2008) (Table 2).

Peak values of climatic diversity may, for example, occur in rain

shadow areas on the leeward side of mountain tops (Figure 2b).

Priorities based on these climatic variables may represent a useful

compromise that avoids overemphasis on montane areas while

acknowledging the value of the steep climatic gradients they

support.

4.1 | How different are conservation networks
based on alternative metrics, and do representation
goals increase or decrease these contrasts?

Comparison of priority area networks based on single metrics con-

firmed that the different metrics are only weak surrogates for one

another. The degree of contrast between metrics varied by ecore-

gion, but there were no strong patterns to contrasts. Generally, con-

trasts were greatest in interior plateaus, where patterns of velocity

were dominated by broad-scale factors, and lowest in rugged coastal

ecoregions where topographic influences dominated. Additional con-

sideration of representation goals (climatic or land facet types)

accentuated the contrasts between priority area networks based on

different types of metrics.

Our results underscore the importance of considering the spatial

scale of factors influencing alternative metrics (Table 2). The results

of the commonality analysis suggest that while topodiversity and

current climatic diversity had similar power in predicting velocity val-

ues for the data as a whole, velocity was predominantly influenced

by gradients in topodiversity in lower velocity areas (Fig. S8), where

topodiversity and velocity gradients are more closely correlated

(Fig. S7). In areas with high velocities, the correlation between diver-

sity and velocity is low because velocity patterns are more strongly

influenced by broad-scale factors such as projected shifts in synoptic

weather patterns (Table 2). In low velocity areas, environmental

diversity is more closely correlated with velocity because both are

strongly influenced by factors such as temperature lapse rate with

elevation.

4.2 | Limitations of coarse-filter and coarse-
resolution metrics

Environmental diversity and climatic velocity are arguably the met-

rics most commonly proposed and used to identify potential refugia

in climate adaptation planning (Schmitz et al., 2015; Tingley et al.,

2014). The goal of this study is to compare these two types of met-

rics, rather than to compare their accuracy in identifying biotic refu-

gia with the performance of more complex metrics such as species

niche models. Conservation planning is always an exercise in deci-

sion making in the face of limited and uncertain data, and especially

so in the case of planning for climate change. Planners should remain

aware of the limitations of both diversity and velocity metrics in cap-

turing complex biotic responses to climate change. Coarse-filter

metrics such as we discuss in this study should typically be comple-

mented with fine-filter (species-specific) metrics where that informa-

tion is available (Tingley et al., 2014). Additionally, there are a

variety of more complex methods for refugia identification based on

climatic data that address connectivity, isolation, compositional turn-

over, and interannual variations in climate (e.g., frequency of extreme

temperatures and drought) (Dobrowski & Parks, 2016).

Planners should also recognize that even when high-resolution

topographic data are available, the types of metrics reviewed here

cannot fully capture complex microclimatic patterns that determine

the location of microrefugia (Table 2). The relationship between

TABLE 2 Spatial scale of the physical and ecological factors related to refugia value and adaptive capacity, and their influence on alternative
metrics

Diversity

Climatic velocity Biotic velocityElevational HLI Ecotype Facet Climate

Cold air pooling 100 m

1 km

10 km

>100 km

Water accumulation

Variation in insolation with aspect 9

Temperature lapse rate with elevation 9 9 9 9 9

Orographic lift and rain shadow 9 9 9 9

Climatic thresholds driving ecotype transitions 9 9

Soil/geologic transitions 9

Coastal proximity/maritime effects 9 9 9

Current broad-scale circulation patterns 9 9 9

Future shifts in circulation patterns 9 9

Latitudinal variation in insolation 9 9 9

Biogeographic barriers 9

CARROLL ET AL. | 4517



topography and climate can also vary substantially across latitude

and season, and between current and future climates (Mountain

Research Initiative, 2015). Fine-scale microclimatic measurements

from ground-based stations can better predict microrefugia (Meineri

& Hylander, 2016), but the sparse coverage of such stations may

limit their use in continental or regional analyses.

There has been recent progress in using remotely-sensed land

surface temperature data to identify microrefugia. However, this

data also has limitations in terms of spatial (MODIS) and temporal

(Landsat) resolution (Pepin, Maeda, & Williams, 2016). Further work

is needed using these remotely sensed data to validate diversity

metrics derived from elevation data and improve the ability of cli-

mate downscaling methods to represent local climate. Due to the

scale-related challenges inherent in refugia identification at the

broad extents relevant to conservation planning, coarse-resolution

metrics remain useful as a complement to high-resolution mapping

of microrefugia at smaller extents.

4.3 | What level of uncertainty characterizes
metrics based on temporal projections?

Recent reviews have proposed that abiotic variables may provide a

more robust basis for identifying priorities under climate change

because of the inherent uncertainty in projections of future climate

arising from contrasts between AOGCMs and emission scenarios

(Beier & Brost, 2010; Beier, Hunter, et al., 2015). However, in our

results the level of uncertainty that characterized climatic velocity

metrics was similar to that between closely related diversity metrics,

and less than that among the suite of diversity metrics as a whole.

While diversity metrics may have less inherent model uncertainty

because they make few assumptions about future biotic responses

to climate change, they miss important physical and ecological pro-

cesses that are captured albeit imperfectly by velocity metrics

(Table 2).

Systematic conservation planning tools such as the ZONATION soft-

ware are designed to identify solutions that efficiently achieve multi-

ple objectives (Moilanen, 2007). Rather than focusing on identifying

a single “best” metric, planners can combine priorities identified by

alternative coarse-resolution metrics, and use approaches such as

info-gap discounting (Moilanen & Wintle, 2006) to downweight

areas of high variation between metrics. In our results, ZONATION

showed moderate success in identifying networks of areas that were

important in terms of both diversity and velocity (Figure 3).

Elevation data, because they are typically available at a much

higher spatial resolution than climate data, are better suited than is

climatic velocity for identifying microrefugia created by fine-scale

processes (Table 2). Such high-resolution topographic data can be

integrated with climatic data via an elevation-based statistical down-

scaling algorithm (Wang et al., 2016). However, as spatial resolution

increases, limited additional information can be gained via statistical

downscaling processes, and such processes become computationally

challenging over large extents (Hall, 2014; Xie et al., 2015).

4.4 | Integrating diversity and velocity metrics in
conservation planning

A more effective approach may be to first use coarse-resolution

velocity metrics to identify potential macrorefugia. Fine-resolution

topodiversity metrics can then be used to identify fine-scale

microrefugia within and outside those macrorefugia (Figures 5 and

F IGURE 5 The bivariate distribution of elevational diversity and
backward climatic velocity values for 1 km2 cells (pixels) in North
America, indicating their relative value as macro- (y-axis) and
microrefugia (x-axis) [Colour figure can be viewed at
wileyonlinelibrary.com]

Representation targets
(land facets)

Spatiotemporal metrics
(velocity)

Spatial metrics
(topodiversity)

Macroscale Mesoscale Microscale

F IGURE 6 Conceptual diagram of a
multiscale prioritization strategy for refugia
identification and landscape-level
adaptation planning. A network of priority
conservation areas would be designed to
capture high-diversity microrefugia within
areas of low climatic velocity, distributed
across landscape types
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6). Additional high-resolution data on microclimatic gradients may

also be used where available to capture processes poorly repre-

sented in downscaling algorithms (Dobrowski, 2011) (Table 2).

In this approach, diversity and velocity metrics, due to their

inherent scale differences, form two distinct axes that are comple-

mentary tools for identification of micro- and macrorefugia, respec-

tively (Figure 5). Identification of microrefugia alone will not result in

a robust conservation network. Locations with high environmental

diversity will play distinct roles depending on whether they lie within

or outside of macrorefugia. In the latter context, microrefugia may

form holdout or stepping stone habitat (Hannah et al., 2014) that

has only transient value before being overwhelmed by broad-scale

climate shifts.

Existing planning approaches often combine a focus on locations

of high environmental diversity (potential microrefugia) with land-

scape-level representation goals (Anderson, Clark, & Sheldon, 2014).

In North America, such analyses have been used recently to help

guide conservation easements and land acquisitions by national con-

servation organizations and local land trusts (Anderson et al., 2015).

Our results suggest that such approaches focused on microrefugia

and representation can be strengthened by adding information on

macrorefugia identified by climatic velocity metrics (Figure 6). By

integrating data from approaches that span a spectrum of model

complexity and spatial scale, conservation planners can better evalu-

ate the range of ecological and physical processes influencing persis-

tence of species and identify a conservation network resilient to

threats operating at multiple scales.

ACKNOWLEDGEMENTS

The manuscript benefited from suggestions by P. Elsen and two

anonymous reviewers. Co-authors are listed in the order of relative

contribution (SDC system). The Wilburforce Foundation provided

support for the authors as part of the AdaptWest Climate Adapta-

tion Planning Project (http://adaptwest.databasin.org; see site for

data associated with this paper).

REFERENCES

Ackerly, D. D., Loarie, S. R., Cornwell, W. K., Weiss, S. B., Hamilton, H.,

Branciforte, R., & Kraft, N. J. B. (2010). The geography of climate

change: Implications for conservation biogeography. Diversity and

Distributions, 16, 476–487.

Anderson, M. G., Comer, P. J., Beier, P., Lawler, J. J., Schloss, C. A., Buttrick,

S., . . . Faith, D. P. (2014). Estimating climate resilience for conservation

across geophysical settings. Conservation Biology, 28, 959–970.

Anderson, M. G., Comer, P. J., Beier, P., et al. (2015). Case studies of

conservation plans that incorporate geodiversity. Conservation Biology,

29, 680–691.

Ashcroft, M. B., Gollan, J. R., Warton, D. I., & Ramp, D. (2012). A novel

approach to quantify and locate potential microrefugia using topocli-

mate, climate stability, and isolation from the matrix. Global Change

Biology, 18, 1866–1879.

ASTER GDEM Validation Team (2009). ASTER global DEM validation sum-

mary report. METI & NASA, 28 pp. Retrieved from https://asterweb.

jpl.nasa.gov/gdem.asp

Beier, P., & Brost, B. (2010). Use of land facets to plan for climate

change: Conserving the arenas, not the actors. Conservation Biology,

24, 701–710.

Beier, P., & De Albuquerque, F. S. (2015). Environmental diversity as a sur-

rogate for species representation. Conservation Biology, 29, 1401–1410.

Beier, P., Hunter, M. L., & Anderson, M. (2015). Special section: Conserv-

ing nature’s stage. Conservation Biology, 29, 613–617.

Beier, P., Sutcliffe, P., Hjort, J., Faith, D. P., Pressey, R. L., & Albuquerque,

F. (2015). A review of selection-based tests of abiotic surrogates for

species representation. Conservation Biology, 29, 668–679.

Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., & Courchamp, F.

(2012). Impacts of climate change on the future of biodiversity. Ecol-

ogy Letters, 15, 365–377.

Carroll, C., Lawler, J. J., Roberts, D. R., & Hamann, A. (2015). Biotic and

climatic velocity identify contrasting areas of vulnerability to climate

change. PLoS One, 10, e0140486.

C.E.C. (1997). Ecological regions of North America towards a common per-

spective. Montr�eal, QC, Canada: Commission for Environmental

Cooperation.

C.E.C. (2010). Terrestrial protected areas of North America, 2010. Mon-

tr�eal, QC, Canada: Commission for Environmental Cooperation.

Comer, P. J., Pressey, R. L., Hunter, M. L., Schloss, C. A., Buttrick, S. C.,

Heller, N. E., . . . Shaffer, M. L. (2015). Incorporating geodiversity into

conservation decisions. Conservation Biology, 29, 692–701.

Crookston, N., & Finley, A. (2008). yaImpute: An R package for kNN

imputation. Journal of Statistical Software, 23, 1–16.

Daly, C., Halbleib, M., Smith, J. I., Gibson, W. P., Doggett, M. K., Taylor, G.

H., . . . Pasteris, P. P. (2008). Physiographically sensitive mapping of

climatological temperature and precipitation across the conterminous

United States. International Journal of Climatology, 28, 2031–2064.

Dobrowski, S. Z. (2011). A climatic basis for microrefugia: The influence

of terrain on climate. Global Change Biology, 17, 1022–1035.

Dobrowski, S. Z., & Parks, S. A. (2016). Climate change velocity underes-

timates climate change exposure in mountainous regions. Nature

Communications, 7, 12349.

Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., . . .

Alsdorf, D. (2007). The shuttle radar topography mission. Reviews of

Geophysics, 45, RG2004.

Ferrier, S., Manion, G., Elith, J., & Richardson, K. (2007). Using general-

ized dissimilarity modelling to analyse and predict patterns of beta

diversity in regional biodiversity assessment. Diversity and Distribu-

tions, 13, 252–264.

Game, E. T., Lipsett-Moore, G., Saxon, E., Peterson, N., & Sheppard, S.

(2011). Incorporating climate change adaptation into national conser-

vation assessments. Global Change Biology, 17, 3150–3160.

Garcia, R. A., Cabeza, M., Rahbek, C., & Araujo, M. B. (2014). Multiple

dimensions of climate change and their implications for biodiversity.

Science, 344, 1247579.

Gillson, L., Dawson, T. P., Jack, S., & McGeoch, M. A. (2013). Accommo-

dating climate change contingencies in conservation strategy. Trends

in Ecology & Evolution, 28, 135–142.

Goodchild, M. (1986). Spatial autocorrelation. Concepts and techniques in

modern geography 47. Norwich, UK: Geo Books.

Groves, C. R., Game, E. T., Anderson, M. G., Cross, M., Enquist, C.,

Ferda~na, Z., . . . Shafer, S. L. (2012). Incorporating climate change into

systematic conservation planning. Biodiversity and Conservation, 21,

1651–1671.

Hall, A. (2014). Projecting regional change. Science, 346, 1461–1462.

Hamann, A., Roberts, D. R., Barber, Q. E., Carroll, C., & Nielsen, S. E.

(2015). Velocity of climate change algorithms for guiding conserva-

tion and management. Global Change Biology, 21, 997–1004.

Hannah, L., Flint, L., Syphard, A. D., Moritz, M. A., Buckley, L. B., &

Mccullough, I. M. (2014). Fine-grain modeling of species’ response to

climate change: Holdouts, stepping-stones, and microrefugia. Trends

in Ecology & Evolution, 29, 390–397.

CARROLL ET AL. | 4519

http://adaptwest.databasin.org
https://asterweb.jpl.nasa.gov/gdem.asp
https://asterweb.jpl.nasa.gov/gdem.asp


Joppa, L. N., & Pfaff, A. (2009). High and far: Biases in the location of

protected areas. PLoS One, 4, e8273.

Jost, L. (2006). Entropy and diversity. Oikos, 113, 363–375.

Keith, D. A., Akcakaya, H. R., Thuiller, W., Midgley, G. F., Pearson, R. G.,

Phillips, S. J., . . . Rebelo, T. G. (2014). Detecting extinction risk from

climate change by IUCN Red List criteria. Conservation Biology, 28,

810–819.

Keppel, G., Van Niel, K. P., Wardell-Johnson, G. W., Yates, C. J., Byrne,

M., Mucina, L., . . . Franklin, S. E. (2012). Refugia: Identifying and

understanding safe havens for biodiversity under climate change. Glo-

bal Ecology and Biogeography, 21, 393–404.

Lawler, J. J., Ackerly, D. D., Albano, C. M., Anderson, M. G., Dobrowski,

S. Z., Gill, J. L., . . . Weiss, S. B. (2015). The theory behind, and the

challenges of, conserving nature’s stage in a time of rapid change.

Conservation Biology, 29, 618–629.

Loarie, S. R., Duffy, P. B., Hamilton, H., Asner, G. P., Field, C. B., & Ackerly,

D. D. (2009). The velocity of climate change. Nature, 462, 1052–1055.

Mackey, B., Berry, S., Hugh, S., Ferrier, S., Harwood, T. D., & Williams, K. J.

(2012). Ecosystem greenspots: Identifying potential drought, fire, and

climate-change micro-refuges. Ecological Applications, 22, 1852–1864.

Margules, C. R., & Pressey, R. L. (2000). Systematic conservation plan-

ning. Nature, 405, 243–253.

McCune, B., & Keon, D. (2002). Equations for potential annual direct

incident radiation and heat load. Journal of Vegetation Science, 13,

603–606.

Meineri, E., & Hylander, K. (2016). Fine-grain, large-domain climate mod-

els based on climate station and comprehensive topographic informa-

tion improve microrefugia detection. Ecography, in press. doi: 10.

1111/ecog.02494

Moilanen, A. (2007). Landscape Zonation, benefit functions and target-

based planning: Unifying reserve selection strategies. Biological Con-

servation, 134, 571–579.

Moilanen, A., Franco, A. M., Early, R. I., Fox, R., Wintle, B., &

Thomas, C. D. (2005). Prioritizing multiple-use landscapes for conser-

vation: Methods for large multi-species planning problems. Proceed-

ings Biological Sciences, 272, 1885–1891.

Moilanen, A., & Wintle, B. A. (2006). Uncertainty analysis favours selec-

tion of spatially aggregated reserve networks. Biological Conservation,

129, 427–434.

Mora, C., Frazier, A. G., Longman, R. J., Dacks, R. S., Walton, M. M.,

Tong, E. J., . . . Giambelluca, T. W. (2013). The projected timing of cli-

mate departure from recent variability. Nature, 502, 183–187.

Mountain Research Initiative EDWWG (2015). Elevation-dependent

warming in mountain regions of the world. Nature Climate Change, 5,

424–430.

Ordonez, A., & Williams, J. W. (2013). Climatic and biotic velocities for

woody taxa distributions over the last 16 000 years in eastern North

America. Ecology Letters, 16, 773–781.

Pepin, N. C., Maeda, E. E., & Williams, R. (2016). Use of remotely sensed

land surface temperature as a proxy for air temperatures at high ele-

vations: Findings from a 5000 m elevational transect across Kiliman-

jaro. Journal of Geophysical Research: Atmospheres, 121, 9998–10015.

Pressey, R. L., Cabeza, M., Watts, M. E., Cowling, R. M., & Wilson, K. A.

(2007). Conservation planning in a changing world. Trends in Ecology

& Evolution, 22, 583–592.

Rao, C. R. (1982). Diversity and dissimilarity coefficients: A unified

approach. Theoretical Population Biology, 21, 24–43.

Ray-Mukherjee, J., Nimon, K., Mukherjee, S., Morris, D. W., Slotow, R.,

Hamer, M., & Nakagawa, S. (2014). Using commonality analysis in

multiple regressions: A tool to decompose regression effects in the

face of multicollinearity. Methods in Ecology and Evolution, 5, 320–328.

Rehfeldt, G. E., Crookston, N. L., Warwell, M. V., & Evans, J. S. (2006).

Empirical analyses of plant/climate relationships for the western Uni-

ted States. International Journal of Plant Sciences, 167, 1123–1150.

Reside, A. E., Welbergen, J. A., Phillips, B. L., Wardell-Johnson, G. W.,

Keppel, G., Ferrier, S., . . . VanDerWal, J. (2014). Characteristics of cli-

mate change refugia for Australian biodiversity. Austral Ecology, 39,

887–897.

Rodrigues, A. S., & Brooks, T. M. (2007). Shortcuts for biodiversity con-

servation planning: The effectiveness of surrogates. Annual Review of

Ecology, Evolution, and Systematics, 38, 713–737.

Sayre, R., Dangermond, J., Frye, C., Vaughan, R., Aniello, P., Breyer, S., . . .

Comer, P. (2014). A new map of global ecological land units—An eco-

physiographic stratification approach. Washington, DC: Association of

American Geographers.

Schmitz, O. J., Lawler, J. J., Beier, P., et al. (2015). Conserving biodiver-

sity: Practical guidance about climate change adaptation approaches

in support of land-use planning. Natural Areas Journal, 35, 190–203.

Scott, J. M., Davis, F. W., Mcghie, R. G., Wright, R. G., Groves, C., &

Estes, J. (2001). Nature reserves: Do they capture the full range of

America’s biological diversity? Ecological Applications, 11, 999–1007.

Stein, A., Gerstner, K., & Kreft, H. (2014). Environmental heterogeneity

as a universal driver of species richness across taxa, biomes and spa-

tial scales. Ecology Letters, 17, 866–880.

Tingley, M. W., Darling, E. S., & Wilcove, D. S. (2014). Fine- and coarse-

filter conservation strategies in a time of climate change. Annals of

the New York Academy of Sciences, 1322, 92–109.

Wang, T., Campbell, E. M., O’Neill, G. A., & Aitken, S. N. (2012). Project-

ing future distributions of ecosystem climate niches: Uncertainties

and management applications. Forest Ecology and Management, 279,

128–140.

Wang, T., Hamann, A., Spittlehouse, D., & Carroll, C. (2016). Locally

downscaled and spatially customizable climate data for historical and

future periods for North America. PLoS One, 11, e0156720.

Wang, T., Hamann, A., Spittlehouse, D. L., & Murdock, T. Q. (2012). Cli-

mateWNA—High-resolution spatial climate data for western North

America. Journal of Applied Meteorology and Climatology, 51, 16–29.

Xie, S.-P., Deser, C., Vecchi, G. A., Collins, M., Delworth, T. L., Hall, A., . . .

Watanabe, M. (2015). Towards predictive understanding of regional

climate change. Nature Climate Change, 5, 921–930.

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the

supporting information tab for this article.

How to cite this article: Carroll C, Roberts DR, Michalak JL,

et al. Scale-dependent complementarity of climatic velocity

and environmental diversity for identifying priority areas for

conservation under climate change. Glob Change Biol.

2017;23:4508–4520. https://doi.org/10.1111/gcb.13679

4520 | CARROLL ET AL.

https://doi.org/10.1111/ecog.02494
https://doi.org/10.1111/ecog.02494
https://doi.org/10.1111/gcb.13679

