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Identifying suitable habitat is critical to endangered species management and recovery. However, this basic
task is often complicated by the rarity of the species in question and the limited availability of high quality
environmental data. The endangered Black-capped Vireo (Vireo atricapilla) occupies early seral shrub com-
munities generated by fire. The ability to predict vegetation structure is particularly important for mapping
vireo habitat because this species occupies transitional, non-equilibrium vegetation types. We use presence
data for territorial male vireos collected throughout the Fort Hood Military Reservation, Texas, to construct
habitat suitability models using vegetation type (mapped from aerial imagery), soil data, and laser altimetry
(LiDAR)-derived measures of vegetation structure. LiDAR produces a three-dimensional, high-resolution rep-
resentation of vegetation structure across broad spatial scales. We built models that incorporated LIDAR out-
puts as well as the other habitat predictors using a non-parametric machine-learning algorithm, cforest.
Models built using a single predictor class (vegetation structure or type or soil) performed similarly across
25 bootstrapped training and test datasets (median accuracies 76%, 74%, and 79%, respectively). Models in-
corporating two predictor classes performed better (80–81%) and only slightly worse than the full model
(82%). Furthermore, vegetation type and soil data were more important predictors of habitat suitability
than structural measures in the full model. Predictive maps suggest that models incorporating vegetation
type and soil would be most useful for habitat conservation and management applications on Fort Hood.
The addition of LiDAR-derived variables to the model further distinguishes suitable habitats from potentially
suitable but presently overgrown areas. In the absence of detailed vegetation data, models based on structur-
al measures performed well when combined with soil data. This could be useful in a broader regional context
in which vireos occupy a greater variety of vegetation types with a common structure.

© 2011 Elsevier Inc. All rights reserved.
1. Introduction

Vegetation structure (i.e. physiognomy) and species composition
are important determinants of habitat suitability for birds (Hutto,
1985; James, 1971; Rotenberry, 1985) as well as predictors of overall
avian diversity (MacArthur & MacArthur, 1961). Field-based sam-
pling methods for quantifying vegetation structure and composition
are widely used (Barber & Martin, 1997), but may be inadequate for
characterizing vegetation across broad spatial extents. Vegetation
plot surveys may be combined with air photo interpretation to
scale-up results into thematic maps of landscapes (Bergen et al.,
2009; Newton et al., 2009). These high-resolution vegetation maps
provide a detailed snapshot of vegetation composition and configura-
tion, but may require months to years in fieldwork and image classi-
fication. Now widely available, remote-sensing methods such as laser
awler@uw.edu (J.J. Lawler),
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altimetry, also known as LiDAR (light detection and ranging), allow
for continuous estimates of vegetation structure (e.g., canopy
height and percent cover) across large areas (Lefsky et al., 2002;
Vierling et al., 2008). LiDAR datasets can be collected in days or
weeks and processed in months, making them attractive for many
conservation and management applications. If physiognomy is
equivalent or superior to vegetation composition as a predictor of
habitat suitability, then rapid habitat assessments using LiDAR-
derived datasets may be preferable to field-based methods.

LiDAR is an active remote sensing technology for mapping three
dimensional surfaces. A LiDAR device emits laser pulses at regular in-
tervals as it is flown above the target surface. The LiDAR sensor then
records the time it takes for the pulses to return. Recording of multi-
ple returns and time delays from millions of laser pulses gives an es-
timate of surface complexity in three dimensions. Sensors can either
record discrete returns or large-footprint waveforms (Lefsky et al.,
2002). Both are collected by sensors affixed to an aircraft and can be
used for high resolution (0.25–5 m) mapping of terrain and vegeta-
tion (Bergen et al., 2009; Lefsky et al., 2002). Terrestrial-based
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Table 1
Response and predictor variables and data sources used in constructing black-capped
vireo habitat models for Fort Hood, TX.

Variable Description Original
format

Reference

VIREO All areas identified as potential vireo
habitat were visited in 2002 and 2003
and locations of observed vireos
recorded.

Point shapefile Cimprich &
Kostecke,
2006

HEIGHT Mean height of woody vegetation.
Calculated using LiDAR return data from
surveys conducted on Fort Hood in
March 2009.

LAS files and
LiDAR-derived
DEM

Optimal
Geomatics,
2009

COVER Percent cover of woody vegetation.
Percent of LiDAR returns measuring
between 1 and 30 m in height.

LAS files and
LiDAR-derived
DEM

Optimal
Geomatics,
2009

COVER2 Percent cover of woody vegetation less
than 3 m tall. Percent of LiDAR returns
measuring between 1 and 3 m in height.

LAS files and
LiDAR-derived
DEM

Optimal
Geomatics,
2009

EDGE Edge density. Total edge length within a
grid cell divided by the area of the cell.
Edges delineated from the 3 m
resolution HEIGHT grid.

HEIGHT grid

VEG Manual delineation and classification of
vegetation type based on aerial imagery
and vegetation sampling data. Sixteen
types identified, e.g., shin oak shrubland,
shin oak-juniper woodland, riparian
woodland, and grassland.

Polygon
shapefile

Reemts &
Teague,
2007

SOIL Soil depth to a restrictive layer extracted
from the Soil Survey Geographic
Database (SSURGO) produced by the US
Department of Agriculture Natural
Resource Conservation Service

Polygon
shapefile

USDA-
NRCS, 2007
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LiDAR, in which data are collected from a fixed location, is used in for-
estry applications and may become appropriate for detailed assess-
ment of micro-scale vegetation structure in the future (Michel et al.,
2008).

The potential applications of LiDAR-derived datasets to modeling
species-habitat relationships are broad and currently under-
developed (Bergen et al., 2009; Lefsky et al., 2002; Vierling et al.,
2008). To date, LiDAR-derived estimates of vegetation structure
have been applied to a range of terrestrial systems, including conifer
forests and alpine meadows (Graf et al., 2009; Müller et al., 2010), de-
ciduous woodlands (Goetz et al., 2010; Hinsley et al., 2006), mixed
conifer/deciduous forests (Clawges et al., 2008; Goetz et al., 2007), ri-
parian forests (Seavy et al., 2009), forest understory (Martinuzzi et al.,
2009), shrub and rangelands (Streutker & Glenn, 2006), and agricul-
tural or mixed-use landscapes (Bradbury et al., 2005; Nelson et al.,
2005). Individual-species distributions (Goetz et al., 2010; Graf et al.,
2009; Nelson et al., 2005), species diversity (Goetz et al., 2007; Müller
et al., 2010; Seavy et al., 2009), and habitat quality (Goetz et al., 2010;
Hinsley et al., 2006)have all been modeled using LiDAR-derived mea-
sures. One study of avian diversity suggested that LiDAR-derived struc-
tural measures performed better than vegetation composition in
predicting site diversity (Müller et al., 2010). Again, where this is the
case, assessment using LiDAR-derived estimates of vegetation phys-
iognomy may be more time and cost efficient than field-based
measurements.

We used LiDAR data to define and map potential habitat for the
black-capped vireo (Vireo atricapilla) on the Fort HoodMilitary Reser-
vation, Texas. The black-capped vireo breeds in shrubland habitats
historically maintained by fire and shallow soils and persisting
5–30 years (Graber, 1961). These transitional habitats are time-
consuming to monitor and map, but initial efforts suggest they may
be identifiable with LiDAR surveys (Leyva et al., 2002). Model-based
habitat mapping using remotely-sensed data could save considerable
effort and aid in the designation and management of critical vireo
habitats. Furthermore, the black-capped vireo is endangered and an
accurate model of habitat suitability would be useful for designating
critical habitat. We constructed and compared predictive habitat
models using all combinations and subsets of LiDAR-derived data on
vegetation structure, field-derived data on vegetation composition,
and soils data. Models were fitted using a machine-learning algorithm
and permutation analyses were used to assess variable importance.

2. Methods

2.1. Study area

Fort Hood, an 87,890-hectare military installation in north-central
Texas (97°44′W, 31°12′N), supports the largest known population of
black-capped vireos under a single management agency (Cimprich
& Kostecke, 2006). Fort Hood is located at the intersection of the
Edwards Plateau and the Crosstimbers and Southern Tallgrass Prairie
ecoregions. Topography includes numerous flat-topped mesas with
steep gullies and mesic bottomlands. The installation is covered by
woodlands and upland forest (47%), grasslands (34%), and small
amounts of shrubland and riparian forest (4% and 3%, respectively).

2.2. Study species

The black-capped vireo is a nearctic-neotropical migrant passerine
that breeds in north central Mexico, Texas, and central Oklahoma and
winters in west central Mexico (Graber, 1961). In Texas, the vireo
nests in shrub thickets comprised primarily of short, deciduous
shrub and tree species arranged in clumps on the landscape
(Grzybowski et al., 1994). These irregularly shaped thickets are
1–3 m tall, provide 30–60% woody vegetative cover, and are separat-
ed by grasslands or rock pavement (Bailey & Thompson, 2007).
Shrublands have been observed to persist on Fort Hood in areas
with shallow soils or where fires ignited by artillery are common
(Pekins, 2006). Otherwise, they represent an early stage in forest suc-
cession that will transition into taller shrubs and trees (Cimprich &
Kostecke, 2006).
2.3. Data sources

An assessment of vireo presence throughout Fort Hood was con-
ducted in 2002 and 2003. All areas identified from aerial photos as
potential vireo habitat were visited during the breeding season
(Cimprich & Kostecke, 2006). Areas were searched on foot by walking
randomly through potentially suitable vegetation. Song playbacks
and multiple visits were used to increase detections. Locations of all
calling male vireos were marked with geographic positioning system
(GPS) receivers.

We used LiDAR data to generate four variables for modeling vireo
habitat (Table 1). LiDAR data were acquired along 42 flight-lines over
Fort Hood during a four-day period (Table 2). Raw LiDAR data were
processed by the contractor using DASHMap software (Optech Inc.,
2006) to create geo-corrected LiDAR point clouds that were used to
construct a digital elevation model (DEM). The DEM was quality
checked by the contractor against 950 test points to estimate a 95%
confidence interval for the DEM of ±0.47 m (Optimal Geomatics,
2009).

We generated maps of canopy height and two measures of
woody cover across Fort Hood using the original geo-corrected
LiDAR point cloud files (LAS file format) and the GridMetrics func-
tion in the FUSION software package (McGaughey, 2009). Estimated
height was the mean height of all first returns in a grid cell exclud-
ing points with heights less than 1 m to avoid calculating grassland
heights (as in Seavy et al., 2009). The first cover estimate was the
percentage of first returns between 1 and 30 m out of all first
returns and provides an estimate of total woody cover. The second



Table 2
LiDAR specifications.

Collection dates 21–25 March 2009
Aircraft Cessna Turbo 206 Stationair
Sensor Optech ALTM S/N 04SEN155
Laser pulse density ~1 point/m2

Laser pulse rate 50 kHz
Flying height 2200 m
Scan angle from nadir ±21°
Horizontal accuracy 1.42 m
Vertical accuracy 1.47 m

37C.B. Wilsey et al. / Remote Sensing of Environment 119 (2012) 35–42
cover estimate was the percentage of first returns between one and
three meters out of all first returns. This is a proxy measure for the
percent cover of low-level vegetation used by nesting vireos. In all
calculations, developed areas and points above 30 m (likely from
man-made structures) were excluded. Grid cells with no woody
vegetation were assigned heights and cover values of zero.

One challenge of using high resolution data is identifying the
appropriate sample frame or grid-cell size (Seavy et al., 2009;
Smith et al., 2008). Initial applications of LiDAR-derived measures
to habitat suitability modeling for birds suggest that these mea-
sures should be summarized at different spatial scales for different
species (Seavy et al., 2009). Therefore, height and cover data were
summarized in raster grids at six spatial resolutions (10, 25, 50,
100, 250, and 500 m) in ArcGIS 9.3 (ESRI, 2009).

We converted a 3-m resolution map of vegetation height into a bi-
nary presence/absence map of woody-vegetation and used it to calcu-
late edge density. Edge density, the total distance of all edges in a grid
cell divided by its area (Neel et al., 2004), was calculated in a GIS at
the six spatial resolutions by summing the total edge distance from
the 3-m resolution map within the larger areas. Edge density is
known to show non-linear responses to patch size and degree of ag-
gregation, but the machine-learning algorithm used to build the
models has the ability to capture this non-linearity (Neel et al.,
2004). Spearman's rank correlations were also calculated among all
LiDAR-derived measures to inform interpretation of variable impor-
tance measures. A map of vegetation types across Fort Hood was gen-
erated in 2007 through manual delineation of vegetation patches
from 0.35-m resolution digital orthophotos taken during 2004
(Reemts & Teague, 2007). Patch classification was based on detailed
vegetation surveys at 193, 400-m2 classification plots distributed
throughout Fort Hood. These were analyzed in a cluster analysis iden-
tifying 70 vegetation classes. These classifications and 358 validation
points were used to generate a photo-interpretation guide that incor-
porated information on vegetation, soils, topography, and known dis-
turbance history for patch delineation and classification. The resulting
vegetation map includes 7693 polygons classified into the 70 vegeta-
tion classes. Wemerged the 70 classes into 16 vegetation types repre-
senting shrub and woodland habitats important to vireos (see Table 1
and Supplementary Fig. A1 for examples). The minimum delineated
patch size was ~0.5 ha. We converted polygon data into grids at the
six spatial resolutions, assigning classes based on the center point of
each grid cell to preserve spatial pattern in the polygon dataset
(Bian & Butler, 1999).

Shrublands suitable to vireos on Fort Hood are known to occur in
areas with shallow soils and rock pavement (Bailey & Thompson,
2007). Therefore, a map of soil depth (cm) to a restrictive layer was
extracted from the US Department of Agriculture Natural Resource
Conservation Service Soil Survey Geographic (SSURGO) database for
Bell and Coryell Counties, Texas (USDA-NRCS, 2007) using the Soil
Data Viewer 5.2 tool (USDA-NRCS, 2008) for ArcMap 9.2. These
maps are based on soil surveys conducted in Bell and Coryell counties
in 1977 and 1985, respectively. The soil map includes 1233 polygons
with soil depths ranging from 28 to 201 cm. The minimum delineated
patch size was also ~0.5 ha, and we again converted this dataset into
raster grids at the six spatial resolutions. We tested for independence
between classifications of vegetation type and soil depth with contin-
gency table analysis (X2). We also converted LiDAR-derived measures
into categorical variables (five bins were used with bin width
depending on variable range) and compared these to classifications
of vegetation type and soil depth to assess independence.

Mapping polygon data to fine resolution raster grids can both im-
prove polygon representation and introduce error. Improvements
occur where a smaller grid-cell size more accurately depicts a patch's
perimeter. Conversely errors are introduced where smaller patches of
potential habitat or non-habitat are obscured by the original, coarser
resolution data. We chose to grid vegetation and soil data to 10, 25,
and 50-m resolution grids because the gains of better representing
patch perimeters likely outweighed the potential for introducing er-
rors. Because the vegetation classification included savanna vegeta-
tion types that described grassy areas with scattered individual
trees and shrubs, it is likely that most of the very small patches of
shrubs were described in these vegetation types. Nonetheless, by
gridding the data at finer resolutions, we introduced error into the
vegetation and soils data.

Vireo presence data were converted into raster grids at the six
resolutions by designating as a presence any grid cell containing a
presence location, and designating remaining cells as pseudo-absences.

2.4. Habitat suitability models

Habitat suitability models were calculated with cforest (Strobl et al.,
2007), a variation of the Random Forest Predictors (RF) classification al-
gorithm (Breiman, 2001). RF is a non-parametric machine-learning tool
notable for (1) requiring no a priori assumptions about the relationship
between predictor and response variables, (2) the ability to model
nonlinear relationships and interactions among variables, and (3)
high prediction accuracy (Prasad et al., 2006). In direct compari-
sons, RF performed similarly or better than parametric methods
such as linear discriminant analysis, generalized linear regression,
classification trees, artificial neural networks, and generalized addi-
tive models (Cutler et al., 2007; Lawler et al., 2006; Prasad et al.,
2006).

The cforest function (CF) of the ‘party’ package version 0.9-995
in R (Hothorn et al., 2010) is not as widely applied as RF. CF is based
on a conditional inference statistical framework (Strobl et al., 2007)
that results in less bias towards predictor variables with many poten-
tial cut points (Strobl et al., 2007). CF is recommended when predic-
tor variables include both categorical and continuous variables and
when continuous variables differ in range (Strobl et al., 2007).

We set aside one third of grid cells in a test dataset to assess accu-
racy and to calculate additional test statistics. The number of random-
ly selected grid cells used for calibration purposes varied with grid
cell size, ranging from 1615 cells for the 500-m resolution model to
6600 cells for the 10-m resolution model. Prevalence, the ratio of
presence to absence grid cells, has been shown to impact calculations
of some performance metrics (Allouche et al., 2006). We therefore
maintained a ratio of one presence to two pseudo-absences in all
test and training datasets. Preliminary analyses suggested that perfor-
mance was sensitive to the composition of the training and test data-
sets. Therefore, we randomly generated 25 training and test datasets
at each spatial scale and calculated performance metrics for each
dataset (as in Santos et al., 2010). This approach, along with the use
of a machine-learning algorithm as opposed to a standard statistical
method such as logistic regression, precluded the use of information-
theoretic methods for model selection and comparison. Therefore, we
used boxplots to summarize performance metrics across the 25
datasets.

We first constructed models using only each data class, i.e. LiDAR-
derived structural measures, the vegetation composition map, or the
soil depth map, summarized across the six spatial scales. For each
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data class we identified the best-performing resolution. We then con-
structed structure+composition, structure+soil depth and compo-
sition+soil depth models as well as the full model (structure+
composition+soil depth).

2.5. Model assessment

We calculated several measures of model fit because there are
many such measures, each with its own advantages and limitations
(Allouche et al., 2006; Fitzgerald & Lees, 1994; Lobo et al., 2008;
Manel et al., 2001; Stehman, 1997). CF models output the probability
of presence for each grid cell in the test dataset. We generated a re-
ceiver operating characteristic (ROC) curve (ROC v1.16 package
Carey, 2007) for each CF model (Hanley & McNeil, 1982) and calculat-
ed the area under the ROC (the area is commonly referred to as the
AUC) to assess model fit (Fielding & Bell, 1997; Hanley & McNeil,
1982). The ROC curve was also used to select a threshold value for
classifying presences from predicted probabilities that minimized
the difference between the rates of omission and commission error
(Jiménez-Valverde & Lobo, 2007). We calculated Cohen's κ statistic
(vcd package Meyer et al., 2010) for agreement between two raters
(Fitzgerald & Lees, 1994) based on this threshold. The κ statistic pro-
vides a measure of accuracy adjusted for prevalence as well as the rel-
ative performance of the classifier across classes (Fitzgerald & Lees,
1994; Manel et al., 2001). In addition, we reported the overall accura-
cy of the classification. Accuracy estimates were also used to assess
whether models performed better than a null model in which pres-
ence and absences were randomly assigned to the test data with the
same proportions as prevalence. An empirical distribution of null
model performance was generated from 1000 simulations of the
null model and used to estimate a probability for the observed accu-
racy of each CF model.

Variable importance was estimated as in RF: calculating the mean
decrease in model accuracy based on cross-validation of the training
data resulting from the random permutation of each predictor vari-
able within each classification tree (Breiman, 2001; Hothorn et al.,
2010). All habitat modeling algorithms and statistical analyses were
conducted using the R statistical package v2.6.1 (R Development
Core Team, 2010).

3. Results

3.1. Single predictor class models

Habitat models constructed with LiDAR-derived measures of veg-
etation structure performed well, correctly predicting between 68%
and 78% of observations in the 25 test datasets (Fig. 1). The relation-
ship betweenmodel performance and resolution was curvilinear with
models at intermediate resolutions (25- and 50-m) performing best.
Models at the 25- and 50-m resolution correctly predicted a median
(across test datasets) of 76% of observations. Other measures of
model performance were similar. AUC scores for LiDAR models ran-
ged from 0.75 to 0.86 and κ values ranged from 0.33 to 0.54.

The relative importance of the four structural variables differed
across resolutions in the LiDAR models. In the top-performing 25-m
resolution model, relative variable importance (listed in declining
order) was: edge density (EDGE), vegetation height (HEIGHT), per-
cent cover of vegetation 1–3 m tall (COVER2), and total percent
woody cover (COVER, Fig. 2). COVER2 was most important in the
10-m resolution model, whereas EDGE was most important in coarser
resolution models. Cover measures were positively correlated (Spear-
man's rank ρ=0.91, p-valueb0.001) and correlated with height
(COVER: ρ=0.85, COVER2: ρ=0.64; p-valuesb0.001) at 25-m reso-
lution. No other LiDAR-derived measures were correlated by more
than |ρ|=0.5 at 25-m resolution.
Model performance increased monotonically with resolution for
the vegetation composition and soil depth models. The best perform-
ing vegetation structure and soil depth models correctly predicted a
median 74% and 79% of observations (Fig. 1, results not shown for
all resolutions). Median AUC and κ values were 0.85 and 0.46 for
the vegetation composition model and 0.84 and 0.54 for the soil
depth model. Threshold dependent accuracy and κ values for both
the vegetation composition and soil models were sensitive to the
minimum distance threshold used, performing worse and better, re-
spectively, than suggested by AUC scores. All models performed better
than a null model that randomly assigned presences and absences
according to prevalence (p-valueb0.001).

Classifications of vegetation typewere not independent of soil depth
in all training datasets (X2 tests, df~272, p-valuesb0.0001). Vegetation
structuremeasures (HEIGHT, COVER, COVER2, EDGE) were also depen-
dent on soil depth (X2 tests, df=72, p-valuesb0.0001) and vegetation
type (X2 tests, df=68, p-valuesb0.0001) classifications.

3.2. Multi-predictor class models

Combining data classes (structure+soil, structure+composition,
and composition+soil) improved median accuracies in all cases
(Fig. 1). Median accuracies were 81%, 80%, and 80%, respectively.
Combining data classes reduced sensitivities to the minimum dis-
tance threshold for the accuracy and κ measures, but these were
still lower than expected given the AUC values for the composi-
tion+soil model. Threshold-independent AUC values showed even
less discrepancy among models. The vegetation structure and soil
model performed slightly better across all performance metrics. The
full model, including vegetation structure, vegetation composition and
soil depth measures, correctly predicted a median 82% of all observa-
tions. Vegetation type was consistently the most important predictor
in the full model, followed by soil depth, edge density and height, and
cover measures (Fig. 2). Again, all models performed better than a
null model randomly assigning presences and absences according to
prevalence (p-valueb0.001).

4. Discussion

The curvilinear response of LiDAR model performance measures
to changes in data resolution (Fig. 1) suggests that vireos are best as-
sociated with habitat structure summarized with 25- to 50-m resolu-
tion grid cells (0.05–0.25 ha). Similar sample areas were used by
Grzybowski et al. (1994) and Bailey and Thompson (2007) to calcu-
late cover and height (0.04 ha) and percent cover and edge density
(0.2 ha) measures, respectively, in their vireo habitat suitability
models. This is now the third analysis of vireo habitat in which
these measures and spatial scales have proven important predictors
of vireo habitat suitability. The 10-m grid cells may be too small to
capture the patchy combination of grass and shrubs associated with
vireos, resulting in poor performance of the finer resolution models.
Aggregation to coarser resolutions introduces errors (Bian & Butler,
1999) that likely decrease model performance.

The relative importance of structural variables in distinguishing
habitat suitability in our models differed from a comparison of nest-
ing and non-nesting vegetation on Fort Hood (Bailey & Thompson,
2007). We found edge density, height and percent cover in the
1–3 m height class were more important than woody cover in distin-
guishing presence and pseudo-absence locations (Fig. 2), whereas
Bailey and Thompson (2007) found woody cover to have a greater
impact than edge density in 0.2-ha resolution models. Anecdotal ob-
servation by D. Cimprich has found that vireos occupy sites across a
range of total woody cover provided there is sufficient foliage close
to the ground. Our cover measures were correlated with each other
and height, and were dependent on classifications of vegetation
type and soil depth. Therefore, edge density likely has a higher



Fig. 1. Threshold-independent (AUC) and threshold-dependent (overall accuracy and Cohen's κ) measures of model performance for (1) models constructed with only LiDAR-
derived measures of vegetation structure at six spatial resolutions (LiDAR), or maps of vegetation type (VEG) or soil depth (SOIL); (2) models combining pairs of predictor classes;
and (3) a full model incorporating all three data classes (FULL). Performance measures for the LiDAR-based models are reported for a range of spatial resolutions but measures for
VEG, SOIL, and combined models are reported for the best-performing spatial resolution (either 10 or 25 m). Dashed lines mark commonly referenced bounds for assessing model
fit for AUC (Swets, 1988) and κ (Landis & Koch, 1977) as well as an arbitrary minimum acceptable threshold of 75% accuracy.
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relative importance in our models because it provides unique infor-
mation about vegetation structure. The exception to this is the 10-m
resolution model where the small grid-cell size likely reduces the in-
formation contained in the edge density metric because of insufficient
coverage. The relative importance of total woody cover and cover in
the 1–3 m height class are reversed in the full model because they
are both dependent on the vegetation type and soil depth classifica-
tions which are absent from the model with only structural variables.
All predictor classes contributed to a full model that outperformed
all other models. Variable importance rankings support the accepted
protocol on Fort Hood for identifying suitable habitat in the field:
searching first for appropriate vegetation composition and then for
appropriate structure. Because LiDAR cannot distinguish among
plant species, importance of vegetation composition ranks higher
than structural measures. For example, an area with appropriate
structure composed mainly of elbowbush (Forestiera pubescens var.



Fig. 2. Mean decrease in accuracy when data for each predictor variable are permutated as a measure of variable importance in the 25-m resolution LiDAR model and FULL model
incorporating all predictor classes. Descriptions of variables and their names are provided in Table 1.
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pubescens), flame-leaf sumac (Rhus lanceolata), or juniper (Juniperus
spp.) would have few to no vireos present, whereas an equivalent
area with Texas redbud (Cercis canadensis var. texensis), Texas red
oak (Quercus buckleyi), or Texas ash (Fraxinus texensis) would have
a moderate number of vireos, and an area with Shin oak (Quercus
sinuata var. breviloba) would have many vireos. Vegetation classifica-
tions and soil depths are more important than structural features in
the full model because vegetation type implies a certain structure.
For example, stands of Shin oak co-dominant with juniper are more
often taller, denser woodlands, whereas Shin oak stands are more
often shrublands. Vegetation type is also dependent on soil depth.
Structural attributes provide a final filter determining habitat suit-
ability because some suitable vegetation is overgrown. Correlations
between LiDAR-derived measures of vegetation structure and mea-
sures derived from aerial photos and field surveys have been ob-
served elsewhere as well (Müller et al., 2009).

Maps predicting habitat suitability across Fort Hood based on
models generated from one of the 25 datasets also support the vari-
able importance rankings (Supplementary Figs. A2 and A3). Predic-
tions based on either vegetation type or soil include areas that are
suitable or potentially suitable. Vegetation composition identifies all
of the best habitat, but also large patches of habitat, particularly in
southeastern Fort Hood, where few vireos have been documented.
This area is dominated by suitable oak species, but is too tall and over-
grown for vireos. Predictions based on soil depth highlight areas with
shallow soils that either are currently shrublands or have the poten-
tial to be shrublands in the future. The vegetation-structure model
identifies suitable habitat structure throughout Fort Hood, including
some regions where very few vireos were observed. These are regions
with suitable structure, but dominated by juniper or shrub species
avoided by vireos (Bailey & Thompson, 2007; Grzybowski et al.,
1994). A map based on vegetation composition is more suitable for
conservation action because it identifies areas of current and poten-
tial habitat, whereas a model based on structure is more of a snapshot
that lacks context. This may be peculiar to the vireo because it prefers
early seral communities. A species preferring mature communities
may be better served by a model of vegetation structure.

The best models performed well in both threshold-independent
(AUC) and threshold-dependent (κ and overall accuracy) measures
of model fit. Median AUC values for our models were equal to or
higher than reported values in other avian habitat suitability model-
ing efforts using LiDAR-derived measures with (Graf et al., 2009)
and without (Seavy et al., 2009) measures of vegetation composition.
Median κ values were higher than values reported for a LiDAR-
derived model of grouse habitat (Graf et al., 2009). Differences in
study design may impact these performance metrics, so is suffices
to say that our models performed similarly to other published at-
tempts. Median accuracies were above 75% for a majority of models.
This level of accuracy would be acceptable for most habitat manage-
ment applications. However, managers may choose to select a more
conservative threshold (one that minimizes commission error) than
we used for designation of critical habitat.

This study effectively applied non-parametric machine-learning
methods to model habitat suitability. The conditional inference statis-
tical framework of CF demonstrates less bias when building classifica-
tion trees with both categorical and continuous predictor variables
(Strobl et al., 2007). The use of 25 randomly generated test and train-
ing datasets provided information on the uncertainty surrounding es-
timates of model performance. This proved to be a useful method for
comparing model performance among machine-learning algorithms.

The age and asynchrony of the data sources used likely introduced
errors into our models. Vegetation growth over time, disturbance-
induced changes in vegetation structure and composition, and annual
variation in the presence/absence of vireos throughout Fort Hood
would explain much of this error. In spite of this, models performed
well, suggesting that broader patterns of vegetation structure, com-
position, and vireo occupancy remain consistent through time. Vireo
habitat may not be as dynamic as previously thought, which has pos-
itive implications for the species as a whole. That said, successfully
modeling vireo occupancy does not imply that density patterns
have not changed over time. This model as well as others employing
remotely sensed data should be validated in the field with current
presence/absence or other data before being applied in a manage-
ment context. Furthermore, model performance would likely be
lower if applied to a new location.

Inaccuracies in LiDAR-derived height estimates have been ob-
served in shrub-steppe vegetation (Sankey & Bond, 2011; Streutker
& Glenn, 2006). However, in both studies inaccuracies did not trans-
late into an inability to classifying vegetation structural types based
on height. The same occurred in this study. The vertical inaccuracy
of our LiDAR dataset was relatively high (1.47 m), but heights differed
between modeled suitable and unsuitable vireo habitats. The use of
edge density, calculated from a binary map of woody vegetative
cover derived from height data, likely decreased the impact of height
measurement errors. In general, vertical inaccuracies in the LiDAR
dataset probably decreased the importance of canopy height as a



41C.B. Wilsey et al. / Remote Sensing of Environment 119 (2012) 35–42
predictor of vireo presence, but did not preclude high overall model
performance.

4.1. Conclusions

The black-capped vireo is an endangered species with a narrow
breeding distribution and habitat requirements restricted by vegetation
species composition and structural attributes. We found that remotely
sensed data products can be used effectively to scale-up predictions of
habitat suitability. Our results suggest that in central Texas, vegetation
composition is a more important predictor of vireo occupancy than
structural attributes, but that structure can serve to either improve pre-
dictions as a filter for vegetation or to predict habitat in the absence of
vegetation data when combined with a second data source such as
soil depth. Field studies indicate that vireo habitat preferences outside
of the Fort Hood region include other shrub and tree species, but often
with the same shrubland structure (Grzybowski et al., 1994; Wilkins
et al., 2006). Therefore, LiDAR-derived measures of vegetation struc-
ture may be a suitable method for predicting range-wide habitat
suitability when broad-scale LiDAR data becomes available. Non-
parametric machine-learning methods, such as cforest, are an effec-
tive tool for modeling habitat when using correlated measures.

In the ongoing discussion of whether physiognomy or species com-
position is a stronger predictor of avian species diversity (MacArthur &
MacArthur, 1961; Müller et al., 2010), Müller et al. (2010) recently
demonstrated that LiDAR-derived structuralmeasuresweremore effec-
tive than field-based measures of vegetation species composition at
predicting avian species composition. For an individual species, prefer-
ence for physiognomy or species composition is a natural history trait,
and does not necessarily fit into a larger pattern reflecting overall spe-
cies diversity. Both vegetation composition and structural variables
contributed to a model of breeding habitat suitability for the black-
throated blue warbler (Dendroica caerulescens, Goetz et al., 2010). V.
atricapilla is an interesting case study because in the area around Fort
Hood it is associatedwith several deciduouswoody species, e.g.Quercus
sinuate var. breviloba, but only as early seral shrublands (Bailey &
Thompson, 2007; Graber, 1961; Grzybowski et al., 1994). Although
structure does serve as a final filter, our results suggest that species
composition can be used to predict vireo occupancy with high accuracy
and is potentially more meaningful for vireo conservation because it
identifies current and potential habitats. Areas that have the right mix
of species could be managed in such a way as to produce the appropri-
ate vegetation structure. Incorporation of other species-specific factors,
such as soil characteristics, further improvemodel performance and can
be combinedwith structural data in the absence of vegetation composi-
tion data. Current estimates of the extent of V. atricapilla habitat across
Texas are imprecise (Wilkins et al., 2006). Our findings suggest that
LiDAR-derivedmeasures of vegetation structure can effectively identify
these ephemeral habitats.

Supplementary materials related to this article can be found on-
line at doi:10.1016/j.rse.2011.12.002.
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