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Abstract

Climate change is already affecting many fish and wildlife populations. Managing these populations requires an
understanding of the nature, magnitude, and distribution of current and future climate impacts. Scientists and
managers have at their disposal a wide array of models for projecting climate impacts that can be used to build such
an understanding. Here, we provide a broad overview of the types of models available for forecasting the effects of
climate change on key processes that affect fish and wildlife habitat (hydrology, fire, and vegetation), as well as on
individual species distributions and populations. We present a framework for how climate-impacts modeling can be
used to address management concerns, providing examples of model-based assessments of climate impacts on
salmon populations in the Pacific Northwest, fire regimes in the boreal region of Canada, prairies and savannas in the
Willamette Valley-Puget Sound Trough-Georgia Basin ecoregion, and marten Martes americana populations in the
northeastern United States and southeastern Canada. We also highlight some key limitations of these models and
discuss how such limitations should be managed. We conclude with a general discussion of how these models can be
integrated into fish and wildlife management.
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Introduction

Climate change has the potential to greatly alter fish
and wildlife populations and their habitats (Parry et al.
2007). Increasing temperatures and altered precipitation
patterns are likely to affect species distributions as well
as hydrological cycles, fire regimes, and vegetation
communities. In many cases, successful fish and wildlife
management will require proactive measures to address
climate change. To develop these measures, managers
will need a basic understanding of the ways in which
ecological systems are likely to respond to climate
change (Littell et al. 2011). Models that project the
potential ecological effects of climate change will play a
critical role in providing such an understanding. Specif-
ically, these models can contribute to climate change
vulnerability assessments, aid in the development of
climate change adaptation strategies, and help in setting
management priorities and goals as part of a larger
and iterative planning and decision-making process
(Figure 1).

Here, we provide an overview of some of the types of
models that can be used to project the effects of climate
change on ecological systems (summarized in Table 1),
and we describe a framework for the effective use of
models (Box 1). We begin with a brief discussion of
climate models. We then focus on four areas of climate
impacts that are critical to fish and wildlife habitat and
population management: hydrology, fire, vegetation,
and individual species responses. We describe the types
of models that are available, discuss model limitations,
and provide examples of model applications. We develop
some of those examples into case studies in which we
describe the methods and model interpretation in
greater detail and apply a simple climate-impacts
modeling framework. We conclude by making recom-
mendations for incorporating climate-impacts modeling
into fish and wildlife management, being careful to
consider the limitations of existing tools. This review is a
general introduction to modeling tools for projecting

climate impacts. It does not provide a comprehensive
review of the history or the state-of-the-art in any of the
four fields of modeling. Instead, it is meant to be an
accessible overview of how ecological models can
potentially contribute to climate-impacts assessments.

Modeling Approaches

Climate models
General circulation models (GCMs) are numerical

models that simulate the physical processes of climate.
These models are the complex dynamic models upon
which the Intergovernmental Panel on Climate Change
(IPCC) has based many of its conclusions and whose
outputs biologists and modelers in other fields have
used to forecast potential ecological climate impacts.
The GCMs used in the IPCC Fourth Assessment Report
(IPCC AR4) were coupled atmosphere–ocean general
circulation models that incorporate processes of thermal
energy storage and release in the oceans as well as the
atmosphere (Solomon et al. 2007). Most of these models
included sea–ice dynamics and an interactive land–
surface component with hydrologic effects, and some
included effects of simulated vegetation. The complexity
of these models derives from the physical equations
used to calculate the movement of mass, momentum,
and energy through the climate system and the multiple
layers of the atmosphere and ocean for which energy
inputs and outputs are calculated. A very simple climate
model might include three layers—the sun and outer
space, the Earth’s atmosphere, and the Earth’s surface—
and model three atmospheric processes: solar radiation,
thermal radiation, and absorption. The greenhouse effect
is an emergent property of this system in which thermal
radiation from the Earth’s surface is absorbed by the
atmosphere and re-radiated back toward the Earth,
maintaining the surface temperature within a range
suitable for life. General circulation models explicitly
model energy transfer processes such as the greenhouse
effect and include many more mechanisms of climate

Figure 1. Integration of climate-impacts modeling into an iterative decision-making process whose goal is to implement and
evaluate climate-resilient management strategies.
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forcing and feedback. A forcing is any model input that
directly impacts either the amount of solar radiation
reaching the Earth’s surface or the amount of thermal
radiation exiting to space (Hartmann 1994). Forcings may
be natural, such as aerosols of volcanic origin, or
anthropogenic, such as increases in greenhouse gases
due to the burning of fossil fuels. Climate feedbacks
respond to changes in global mean temperature and
also directly or indirectly affect the Earth’s solar and
thermal radiation budgets (Bony et al. 2006). Examples
of feedbacks include humidity (warmer air holds more
water vapor, a greenhouse gas that contributes to
further warming), clouds (may result in warming or
cooling depending on the cloud type), and ice– and
land–surface albedo (melting ice results in additional
warming because ice cools the Earth’s surface by
reflecting incoming solar radiation).

Limitations and uses. Variability in climate projections
provides a significant challenge for modeling ecological
climate impacts. Climate sensitivity is a standardized
measurement used to quantify this variability. It is the
change in global mean temperature that occurs when
the global average surface air temperature reaches
equilibrium in response to a doubling of atmospheric
CO2 (Bony et al. 2006). Projections of climate sensitivity
range from 2.0 to 4.5u C (Solomon et al. 2007), but they
may be significantly higher than this projection (Roe and
Baker 2007). Some of this variability stems from variation
in GCM structures and inputs. Each of the 23 GCMs
involved in the IPCC AR4 simulates climate processes
differently, producing different projections of future
climates (Solomon et al. 2007). Gaps in our
understanding of the climate system also generate
uncertainty. For example, GCMs are currently unable to

accurately simulate precipitation (especially in the
tropics), oceanic oscillations, and cloud dynamics
(Solomon et al. 2007). Forcing components are also a
source of uncertainty in GCM projections, particularly
the effect of aerosols and greenhouse-gas emissions
(Solomon et al. 2007). Finally, the different greenhouse-
gas emissions scenarios used to define anthropogenic
forcings in GCMs result in a range of projections. For
continental- or global-scale projections or for more than
about two decades into the future, greenhouse-gas
emission scenarios and GCM structure are the two
greatest sources of variability in climate projections
(Hawkins and Sutton 2009, 2011). The differences in
emissions scenarios account for the greatest amount of
variation in projections farther than about 50 y into the
future. In subcontinental and regional projections of the
next one or two decades, internal variability in model
runs (i.e., climatic variability) is the primary source of
uncertainty, followed by variability due to GCM structure
(Hawkins and Sutton 2009). Improved understanding and
validation of climate feedback mechanisms may further
reduce uncertainties in projected climate sensitivities
(Bony et al. 2006) and improve confidence in short-term
regional projections, but they are unlikely to alter long-
term global projections (Hawkins and Sutton 2009) or
reduce the occurrence of extreme projections (Roe and
Baker 2007).

General circulation model resolution is often too
coarse (15,000–25,000 km2) for outputs to be used
directly by regional or local climate-impacts models
(Solomon et al. 2007). Therefore, projections must be
downscaled to finer resolutions, either statistically or
dynamically. Statistical downscaling translates climate
projections to a finer scale (1–50 km2) grid cells or a

Tools for Assessing Climate Impacts C.B. Wilsey et al.

Journal of Fish and Wildlife Management | www.fwspubs.org June 2013 | Volume 4 | Issue 1 | 222



single site by using statistical relationships based on
historical climate records, topography, or both (Salathe
et al. 2007). General circulation model outputs also can
be downscaled dynamically with regional climate models
(RCMs). These models are similar to GCMs, but they
model dominant regional climate mechanisms at finer
scales (,20 km2). Generally, RCMs differ from statistical
downscaling because they model drivers of local climate
explicitly (Salathe et al. 2007; Solomon et al. 2007).
However, RCMs can be as difficult to build and time-
consuming to run as GCMs. Both statistical and dynamic
(e.g., RCM) downscaling methods introduce additional
uncertainty in climate projections. Statistically and
dynamically downscaled climate projections have been
made publicly available at resolutions ranging from 1
to 50 km2 (e.g., Maurer et al. 2007; Ramirez and Jarvis
2008; Girvetz et al. 2009; Mearns et al. 2009) at regional
and global scales, so that ecological and other climate-
impacts modelers can avoid the task of manipulating the
raw GCM output or performing the downscaling.

Comparative studies of output across multiple GCMs
coordinated by the Coupled Model Intercomparison
Project (Meehl et al. 2007; CMIP 2010) found that
projected changes in decadal mean surface tempera-
tures are most informative at approximately 40 y into the
future and noisier with increasing latitude (Hawkins and
Sutton 2009). This finding has led, in part, to a new
emphasis on decadal prediction that may increase the
availability of medium-term (10–30 y) regional climate
projections (Meehl et al. 2009) and is integrated into the
latest Coupled Model Intercomparison Project 5 (Taylor
et al. 2012). When studying longer term projections, out
100 y or more, an explicit characterization of uncertain-
ties becomes more important, typically by using an
ensemble of GCM simulations (e.g., Mote et al. 2011).
Ensembles combine projections from multiple GCMs,
emissions pathways, or a combination (Tebaldi and
Knutti 2007; Knutti et al. 2010) and can help quantify
the variability and inherent uncertainty in future climate
projections (e.g., Garcia et al. 2012).

In spite of the many known uncertainties described
above, the climate projections produced by GCMs and
RCMs are useful for assessing ecological climate impacts.
The strength of the GCMs lies in their foundation in
physical principles (as opposed to applying purely
statistical projections), and their robustness is evident
in their ability to recreate broad patterns of climate
variability and simulate past climates (Solomon et al.
2007). The latest generation of coupled atmosphere–
ocean general circulation models and Earth System
Models that include carbon cycling (e.g., http://www.
cesm.ucar.edu) are a promising improvement. They
include advances in simulations of important phenom-
ena such as the El Niño Southern Oscillation (Guilyardi
et al. 2012), and they outperform the previous generation
of GCMs in their ability to simulate historical temperature
changes at fine spatial and temporal scales (Sakaguchi et
al. 2012). Despite these models representing more
processes in greater detail and including more explicit
feedback mechanisms, the variation among model
projections has not increased (Knutti and Sedlacek 2012).

There have been many attempts to guide the selection
of which GCMs should be included in a particular
impacts study (e.g.,Tebaldi and Knutti 2007). However,
using the ability of GCMs to reproduce historical climate
(i.e., model skill) to rank models is difficult to implement
consistently (Knutti et al. 2010; Weigel et al. 2010). The
magnitude of projected impacts has generally shown
little dependence on the skill of the GCMs included in
an ensemble (e.g., Brekke et al. 2008; Pierce et al. 2009).
So, it is unclear whether the ability to simulate past
conditions results in greater certainty in future forecasts,
leading to the common conclusion that model skill may
be less important in estimating climate change impacts
as long as a large ensemble of GCMs is used (Mote et al.
2011).

Hydrological models
Among other things, hydrological models can simulate

climate-driven changes in the timing and quantity of
stream flow, snowpack dynamics, and evapotranspira-
tion, all factors with potential to influence fish and
wildlife populations both directly and through indirect
effects on habitat suitability. Model outputs can be
useful for developing land-management policy. For
example, projected downstream impacts of climate
change on freshwater species may support upstream
habitat restoration or land-use planning, particularly
when model outputs suggest future increases in extreme
hydrological events, such as drought and flooding.
Outputs from hydrological models also provide inputs
to other climate-impacts models, including fire and
vegetation models.

There are a wide variety of hydrological models, and
they differ in their structure and application (Kampf and
Burges 2007). Most hydrological models include equa-
tions that account for the major components of water
and energy budgets as well as a flow-routing scheme to
redistribute water through a catchment. Spatially explicit
hydrological models divide the study area into discrete
elements, such as a regular grid. Meteorological data are
passed to each grid cell, and the model produces
estimates of important hydrological variables such as
runoff, evaporation, and snowpack. Runoff is typically
routed through a river network to produce flow
estimates at strategic points.

Coarse-scale (15,000–25,000 km2), one-dimensional
hydrological models are embedded in many GCMs.
These models can be used to examine global patterns
of runoff and soil moisture, but they have trouble
simulating historical flows because they are one-dimen-
sional and therefore lack routing in two-dimensional
space (Parry et al. 2007). The coarse resolution of GCMs
and runoff-estimate biases make these models difficult to
use at subcontinental scales.

Macroscale hydrological models (e.g., Liang et al. 1994)
are typically applied at grid resolutions that range from 4
to 25 km. They generally represent hydrological process-
es in more detail than GCM-embedded models (Cher-
kauer and Lettenmaier 2003). Macroscale models also
can be driven by weather station data, regional climate
model output, or statistically downscaled GCM output.

Tools for Assessing Climate Impacts C.B. Wilsey et al.

Journal of Fish and Wildlife Management | www.fwspubs.org June 2013 | Volume 4 | Issue 1 | 223



Table 1. Types of climate-impacts models, their potential applications and limitations. Information adapted from reviews by
Keane et al. (2004), Botkin et al. (2007), Kampf and Burgess (2007), Solomon et al. (2007), Flannigan et al. (2009), Lawrence et al.
(2011), Littell et al. (2011), and Seidl et al. (2011).

Ecological process Model categories Description Applications Limitations

Climate (Solomon et al.
2007)

Global climate models
(GCMs)

Coupled AOGCMa simulate
movement of mass,
momentum, and energy
through layers of the
atmosphere and ocean

Estimate climate sensitivity
Project global and regional
changes in temperature,
precipitation, and other
aspects of climate

Coarse spatial resolution
Variability among GCMs
Uncertainty around modeling
of climate feedback
mechanisms
Inability to capture regional
climate phenomena

Regional climate models Dynamic downscaling of
GCM output simulating
regional climate
phenomena

Estimate regional projected
changes in temperature,
precipitation, and other
measures of climate
Provide inputs to other
climate-impacts models

Variability among GCMs
Uncertainty associated with
modeling regional processes

Downscaled GCM output Statistically downscale
GCM output based on
historical climate,
topography, or both

Same as regional models Variability among GCMs
Finer spatial resolution does
not imply the inclusion of
regional climate processes

Hydrological (Kampf
and Burgess 2007)

Global climate models One-dimensional
empirical models of
runoff and soil moisture

Continental-scale patterns
of runoff and soil
moisture

Coarse spatial resolution
One-dimensional
representation
Uncertainty in precipitation
projections

Macroscale hydrological
models

Two-dimensional models
incorporating soil moisture,
runoff, and flow routing
(4–25-km grid cell size)

Global and subcontinental
patterns of runoff and
soil moisture
Drought and flow
forecasting
Hydropower planning
Impacts of land-use
change

Uncertainty in precipitation
projections
May not include changes in
land-use, disturbance, and
vegetation cover

Subregional hydrological
models (also see coupled
hydrological-vegetation
models)

Including more processes
than macroscale, such as
groundwater movement
and effects of shading
and vegetation
Fine resolution (can be
,100 m)

Impacts of land-use
change (e.g., forestry and
restoration)
Potential for erosion and
mass wasting
Valuation of ecosystem
services

Uncertainty in precipitation
projections and changes in
land cover
Improved representation of
local processes requires more
data and time to parameterize
and run the model

Fire (Keane et al.
2004; Flannigan et al.
2009; Seidl et al. 2011)

Fire hazard and fire
weather models

Empirical index of fire
risk based on present
and future fuel availability
and weather conditions
suitable for fire

Detect change in fire
danger, season length,
potential fire behavior,
and resulting haze

Static models of current
conditions
Limited by the resolution of
model inputs (e.g.,
characterization of fuels) and
uncertainty in precipitation
projections

Fire occurrence and area
burned models

Empirical model relating
meteorological variables
to fire occurrence or
historical area burned

Estimate area burned
and fire frequency
Identify sites for
management
Estimating future wildfire
suppression costs

Assume that past climate and
fire relationships will
continue in the future
Do not consider feedbacks
between vegetation and fire

Fire behavior and effects
models

Process-based models
simulate fire spread
and impacts on a real
or representative
landscape

Stand level
Estimate fire effects
including area burned,
mortality,
age-class distribution,
smoke, and soil heating

Rely upon historical
relationships for specification
of key parameters, such as
ignition probabilities and fire
severity, for each vegetation
types

Landscape fire succession
models (also see
landscape models)

Process-based models
simulate fire behavior
and effects as well as
vegetation succession

Spatially explicit estimates
of fire regime, fire season
length, area burned,
carbon flux, mortality,
age-class distribution,
fire effects, and vegetation
succession

Rely upon historical
relationships for specification
of key parameters, such as
ignition probabilities and fire
severity, for each vegetation
types
Complex models difficult to
learn
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Table 1. Continued.

Ecological process Model categories Description Applications Limitations

Vegetation (Lawrence
et al. 2011; Littell et al.
2011)

Forest gap models Simulate forest dynamics
at the stand or patch
level

Simulated forest species
composition, biomass,
seed dispersal, and stem
density

Stand-level projections
Impacts of increased CO2 on
WUEb across life stages still
poorly understood
Some processes (e.g., grazing
and disease) may be left out
of models
Absence of future land-use
change

Landscape models Simulate multiple
processes (e.g.,
management, disturbance,
competition, and
dispersal) occurring at
the scale of the landscape,
stand, species, and
individual tree

Simulated forest species
composition, biomass,
and disturbance regimes

Impacts of increased CO2 on
WUE across life stages still
poorly understood
Complex models difficult to
learn

Dynamic global
vegetation models

Simulate percent cover
of globally distributed
plant functional types

Simulate growth and
disturbance (including
fire), percent cover of
plant functional types,
and seed dispersal

Simulate a limited number of
plant functional types
Often unable to simulate
individual stands
Impacts of increased CO2 on
WUE across life stages still
poorly understood
Complex models difficult to
learn

Biogeochemical models Simulate forest–
atmosphere processes
(e.g., gas exchange and
hydrology) and carbon
and nutrient budgets

Used to identify rate-
and process-limiting
factors across biomes or
geographic regions
Track multiple processes
such as changes in net
primary productivity,
abiotic soil processes,
and nutrient cycles

Based on plant functional
types rather than species
Input variables not readily
available
Highly technical and difficult
to learn

Coupled hydrological
vegetation models

Simulates hydrologic,
biogeochemical, and
vegetation processes

Simulate stream flow,
net primary productivity,
nutrient cycling, and
dynamic land cover in
responses to variation in
topography, vegetation,
and climate
Often embedded in
global or regional climate
models

Uncertainty in precipitation
projections
Limited number of plant
function types or land cover
classes
Uncertainty in
parameterization of complex
biogeochemical processes
and feedbacks
Highly technical and difficult
to learn

Individual species
(Botkin et al. 2007)

Empirical and statistical
models

Use statistical or
algorithmic techniques
to relate historical climate
to current species’
distributions

Model range contractions
and expansions
Identify threatened species
Highlight areas for
conservation action

Assume that the current
distribution represents the
climatic limit of the species
Does not consider
phenotypic plasticity or
evolution, dispersal ability,
interspecific interactions, or
varying climate tolerances
across life stages
Projections vary across
modeling approaches

Mechanistic models Spatially explicit
population models
Cellular automata
Connectivity models
Bioenergetic models

Simulate population
abundance and dynamics,
dispersal, gene flow,
phenology, connectivity,
range contractions, and
expansions
Identify threatened species
Cumulative impacts
assessment

Complex models with many,
sometimes unknown,
parameters can introduce
uncertainty
Time-consuming to build and
run simulations

a AOGCM = atmosphere–ocean global climate model.
b WUE = water-use efficiency.

Tools for Assessing Climate Impacts C.B. Wilsey et al.

Journal of Fish and Wildlife Management | www.fwspubs.org June 2013 | Volume 4 | Issue 1 | 225



Macroscale models are often used to examine how
climate affects the hydrologic cycle at continental and
subcontinental scales (e.g., Maurer 2007).

Subregional hydrological models (e.g., Wigmosta et al.
1994) represent terrain at finer resolutions (i.e., ,100 m)
and may contain more processes than macroscale
models, such as lateral distribution of groundwater,
shading in areas of high topographic relief, or vegetation
effects. Subregional models also are driven by meteoro-
logical data, although the data must often be interpo-
lated. Subregional models are appropriate for simulating
the effects of climate and land use on the hydrology of
small catchments, for which representing topographic
complexity is important.

Limitations and uses. Hydrological models are limited
by uncertainties in the parameterization of underlying
physical equations, model structure, and model inputs,
such as climate data and land–surface parameterizations
(Parry et al. 2007). These models are particularly sensitive to
uncertainties in precipitation data, the primary driver of
hydrology. Precipitation is difficult to measure and is sparsely
measured (e.g., one National Oceanic and Atmospheric
Administration cooperative observer station per ,700 km2;
Maurer et al. 2002), leading to uncertainties in the charac-
terization of spatial distribution of precipitation used to force
a hydrological model. Projections of future precipitation
carry the additional uncertainties related to emission
scenarios (Christensen et al. 2007), GCMs (Graham et al.
2007), and downscaling (Fowler et al. 2007). Because future
temperature projections are generally more consistent
among GCMs than precipitation projections, modeled
hydrologic impacts driven by temperature, such as
changes to snow-dominated basins (e.g., McKelvey et al.
2011), are less variable than impacts that are driven by
precipitation.

Nonclimatic factors influence hydrology and may
complicate interpretation of simulations if not included
in a model. Land-use change, including climate-induced
vegetation change, may alter hydrology as much as
climate change (Parry et al. 2007). For example, the tree
line may shift upward in elevation with warming (Harsch
et al. 2009), and wildfires may increase in size and
frequency in response to warmer, drier conditions (Littell
et al. 2009; Littell and Gwozdz 2011). A warmer, drier
climate also could increase irrigation demand such that
even when coupled with more efficient irrigation
technologies, in-stream flows could be reduced. Changes
in agriculture, irrigation practices, and reservoir opera-
tion are as likely as climate-induced change, and
previous study shows that such changes can affect
model results (Haddeland et al. 2007). These additional
factors are often addressed in a separate model that uses
hydrological model output to assess water-system
changes (e.g., Vicuna et al. 2007). Dynamic vegetation
responses, such as effects of increased CO2 concentra-
tions on biomass production and transpiration rates, can
be important at the continental scale (Betts et al. 2007).
However, these vegetation responses are rarely included
in hydrological models because their hydrologic impact
is considered substantially smaller than climate or land
use (Piao et al. 2007; but see Lawrence et al. 2011).

Hydrological models are useful for developing adap-
tation strategies to address climate change. Macroscale
models have been used for land-management impact
assessment (e.g., Haddeland et al. 2007) and mapping of
suitable wolverine Gulo gulo habitat based on projected
spring snowpack (McKelvey et al. 2011). Subregional
models have been used to test the effect of land-use
change and forestry practices on flows (e.g., VanShaar
et al. 2002) and to compare the impact of climate and
habitat restoration on salmon populations (e.g., Battin et
al. 2007). Selecting the right model to address the spatial
scale of interest is crucial, but it often involves balancing
accuracy with cost while ensuring the model is capable
of simulating the most important aspects driving local
ecosystem impacts. Models are constantly evolving to
simulate more aspects of the environment driving or
responding to hydrologic change, such as urban and
agricultural water management (e.g., Yates et al. 2005),
sediment production and transport (e.g., Doten et al.
2006), and stream temperatures (e.g., Ficklin et al. 2012).
Subregional hydrological models may be necessary for
capturing local-scale dynamics and climate-induced
impacts not captured by coarse-resolution models.
However, a subregional model requires additional time
to parameterize, calibrate, and run compared with the
simpler process of setting up and running a macroscale
model, and many macroscale models do have the ability
to account statistically for subgrid scale variability in
elevation, rainfall, or other characteristics. Greater avail-
ability of downscaled climate data may increase the use
of subregional hydrological models. Climate change
adaptation strategies for freshwater systems will benefit
from hydrological modeling projections that characterize
the direction, magnitude, and uncertainty of future
change as well as evaluate the benefits of proposed
management.

Case study. Changing river flow rates can have
significant ecological consequences. Flow rates
influence the extent of available freshwater habitat,
mediate changes in habitat condition over time, regulate
the input and output of nutrients and waste, and can
restrict habitat connectivity (Rolls et al. 2012). Assess-
ing the consequences of altered flows on species of
management concern is therefore a high priority for the
conservation of freshwater species and ecosystems.
Furthermore, identifying areas in which habitat
preservation or restoration may mitigate these changes
is needed for climate change adaptation.

Battin et al. (2007) linked climate, hydrological, land-
use, and wildlife population models to assess the effects
of climate change on habitat restoration for Chinook
salmon Oncorhynchus tshawytscha (Box 2). The system of
linked models allowed the researchers to simultaneously
consider scenarios for both climate change and habitat
restoration and to assess their relative impact on salmon
abundance. Battin et al. (2007) found that climate change
is likely to impact both peak winter and minimum
summer flows, with potential negative impacts on
salmon recruitment that outweigh gains from habitat
restoration in most places. They addressed uncertainty
by using outputs from two GCMs and two habitat
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restoration scenarios, but they used only a single CO2

emissions scenario because variability among emissions
scenarios is modest in 25- and 50-y projections.
Hydrological outputs from the two GCMs agreed on
the simulated magnitude and spatial pattern of change
in summer minimum flows, but they differed for winter
peak flows. Given these uncertainties, Battin et al. (2007)
suggested focusing on downstream portions of the
watershed with greater model agreement and less
projected change. These downstream areas had fewer
simulated declines in salmon populations under all
scenarios. A focus on the restoration of low-elevation
sites for their potential resilience to climate change is a
strategy that may apply to other basins supporting
salmon populations or other fish populations sensitive to
flow rates.

Fire models
Fire is an essential ecological process affecting nutrient

cycling, regulating the density of young trees and the
redistribution of water and sediment, and creating
habitat for fish and wildlife (Noss et al. 2006). Widespread
changes in these processes may alter the habitat and
food sources for entire wildlife communities, in some
cases reducing habitat availability and connectivity.

Fire–climate models estimate the effects of climatic
variability and change on components of fire regimes,
including frequency, extent, severity, seasonality, and
spatial pattern. These models can be empirical (e.g.,
based on correlative relationships derived from current
or historical patterns; Flannigan et al. 2005), process-
based (e.g., based on rules or functions that together
simulate one or more processes; Andrews et al. 2004), or
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some combination of the two (Keane et al. 2004), and
they have been used at many spatial and temporal scales
(Flannigan et al. 2009). Given the critical role that fire
plays in shaping the composition and distribution of
vegetation, understanding the effects of climate change
on fire regimes will be critical for wildlife management.

Fire is a contagious disturbance process that spreads
across a landscape based on local weather and the
spatial connectivity of fuels (Peterson 2002; McKenzie
et al. 2011). Climate drives fire regimes through the
short-term effects of weather on fuel moisture and the
long-term effects of climate on vegetation growth and
distribution. Vegetation patterns combine with climate
and topography to influence fire regimes (Swetnam and
Betancourt 1998) whose pattern, severity, and seasonal-
ity then strongly influence vegetation composition and
structure (Lenihan et al. 2008). Viewed at coarse scales
(e.g., subcontinental regions), fire is driven by climate
(Littell et al. 2009). At finer scales (e.g., a watershed or
forest stand), fuel loads and topography can have
substantial effects, except under extreme weather
conditions (Turner and Romme 1994). Consequently,
coarse-scale fire models tend to be empirical models of
fire weather, occurrence, or area burned based on the
climatic conditions that drive extreme weather events
(Lenihan et al. 2008). Fine-scale process-based models,
including models of fire behavior and landscape
succession models, often take a wider array of inputs,
including vegetation structure and available fuels,
topography, and ignition sources, in combination with
climate-driven weather.

The temporal scale of a study also influences which
processes are included in process-based simulation
models and which variables are used for empirical
models. For example, short-term dynamic predictions
of fire behavior and fire effects usually simulate fire
spread combined with calculations of consumption,
smoke emissions, and plant mortality (Keane et al.
2003). Long-term projections can be based on empirical
models derived from paleo-fire records (Higuera et al.
2009) and climate reconstructions, 20th century meteo-
rological and fire observations (Littell et al. 2009), or
multidecadal simulations that couple GCM outputs with
a dynamic vegetation model that includes a fire module
(Lenihan et al. 2008).

Among the most integrative modeling approaches are
the so-called landscape fire succession models that
combine process-based simulation methods with empir-
ical relationships between climate and fire, to project
the impacts of climate on vegetation, fire, and their
interaction (Keane et al. 2004). These models typically
produce spatially explicit estimates of vegetation suc-
cession, fire ignitions, fire spread (area burned), and fire
effects (e.g., mortality, consumption, smoke, and soil
heating), but they come in many forms and vary widely
in complexity (Keane et al. 2004). There are four general
components of the ideal landscape fire succession
model: 1) ecological processes; 2) climate dynamics; 3)
disturbance interactions; and 4) spatially explicit struc-
ture and process, but no models currently in use have all
of these components (R. E. Keane, USDA Forest Service,

Rocky Mountain Research Station, Missoula Fire Sciences
Laboratory, personal communication). More sophisticat-
ed landscape fire succession models—particularly those
that are to be applied to mountainous and semiarid
landscapes—could incorporate topographically relevant
hydrological models.

Limitations and uses. One of the largest limitations of
using empirical models to predict future fire regimes is the
assumption that historical relationships among climate,
fuels, and fire will hold in the future. Novel climates, new
vegetation communities, and future management policies
may alter many of these historical relationships, particularly
at finer spatial scales (McKenzie and Littell 2011). Process-
based simulation models are similarly limited by their
reliance on historical relationships for the specification of
key fire-regime parameters, such as distributions of
ignition probabilities and metrics of fire severity for
specific vegetation types. Furthermore, process-based
models vary in the extent to which human impacts, such
as ignition probabilities, or the impacts of other natural
disturbances, such as insect outbreaks and plant disease
(Seidl et al. 2011), are considered.

Although it may be difficult to predict future fire
regimes accurately for a given location, the differences
between simulations run under a range of conditions will
inform management decisions (Keane et al. 2004). For
example, when given a range of possible outcomes,
managers can weigh the relative need for prescribed
burning, firefighting, and buffering of wildlife habitats.
Empirical models have illustrated relationships between
20th century climate and area burned (Littell et al. 2009)
and fire frequency (Gedalof et al. 2005), suggesting
increased fire risk given projected future climate.
Process-based fire simulation models suggest that
negative feedback from forest clearing and previous
fires may reduce, but not eliminate, projected climate-
induced increases in area burned (Krawchuck and
Cumming 2010). These models, along with near- and
long-term climate projections, may help to identify
where adaptive management techniques might be
cost-effective and how much fire-control costs may
escalate (Corringham et al. 2008). Reliable climate
forecasts a season or two in advance could inform
national fire management plans in time for proactive
management. Long-term projections of climate can be
used to assess potential impacts of climate-altered fire
regimes on vegetation.

Case study. Wildfire impacts nutrient cycles, young
trees and understory vegetation, and the distribution of
water and sediment, all of which can impact fish and
wildlife habitats (Noss et al. 2006). Changes in wildfire
may benefit some wildlife species at the expense of
others (e.g., Smucker et al. 2005), making it critical to
characterize the direction and magnitude of projected
change. Annual area burned, fire season length, and the
frequency of large fires have been used to characterize
regional changes in wildfire (Westerling et al. 2006) and
can be estimated from GCM outputs (e.g., Westerling and
Bryant 2007). Identifying regions with increasing risk of
fire under climate change would alert managers to the
need for planning and treatment to protect critical
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wildlife areas as well as to potentially looming
suppression costs.

Flannigan et al. (2005) used statistical models to
predict annual forest area burned across Canada under
simulated future climates (Box 3). Models were con-
structed for eight ecozones reflecting broad-scale
historical differences in fire frequency and extent. Models
used historical meteorological data as predictors of area
burned calculated from a large fire database spanning
1959–1997 (Stocks et al. 2002). Projections were made
using outputs from two GCM models run for a single
emissions scenario that simulated a tripling of atmo-
spheric CO2 concentrations by the end of the century.
Outputs suggest that annual area burned by wildfires will
likely increase across Canada. There is some uncertainty
among the GCM models used regarding the magnitude
of the increase, but no ecozones were projected to
experience declining wildfire. The potential addition of
millions of hectares burned annually could result in
dramatic changes in the distribution of vegetation and
associated wildlife across Canada. These results are most
informative for improving regional forest management

policy, but they are too coarse in resolution for assessing
the impacts at a specific location. Furthermore, outputs
from a larger number of GCMs would better characterize
the uncertainty surrounding the magnitude of projected
increases. In spite of their limitations, these results
suggest that evaluating fire impacts on fish and wildlife
habitats across the boreal forest and taiga regions of
Canada would be useful to identify wildlife species that
may require protection or assistance under increasing
wildfire.

Vegetation models
Vegetation is fundamental for terrestrial food webs

and is an essential element in the habitat of many animal
species. As climates change, plant species ranges will
shift; biomes will exhibit altered characteristics; and the
structure and composition of vegetation communities
will adjust, all influencing habitat and food resources for
many animals. Therefore, vegetation models have the
potential to provide insight for local- to continental-scale
management, policy and for planning decisions regard-
ing wildlife.
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Vegetation models range from statistical models that
identify relationships between plant distributions and
environmental variables to mechanistic models that
simulate the physical processes controlling the distribu-
tion of vegetation. Statistical models are often used to
project changes in the distributions of individual plant
species or communities (e.g., Rehfeldt et al. 2012). These
models are described in the Individual Species Models
section below. Here, we focus on process-based vege-
tation models.

Process-based vegetation models simulate aspects of
plant physiology (e.g., photosynthesis), carbon and
nutrient cycles, competition between individual plants
or vegetation types, disturbance regimes, hydrology, and
other processes. They include forest gap models (e.g.,
Bugmann 2001; Larocque et al. 2011), landscape models
(e.g., Keane et al. 2004; Keane et al. 2011), terrestrial
biogeochemistry models of carbon and nutrient cycles
(e.g., Parton et al. 2007), dynamic global vegetation
models (Cramer et al. 2001; Quillet et al. 2010), and
coupled hydrology–vegetation models (e.g., Tague and
Band 2004; Lawrence et al. 2011). Vegetation in these
models is represented as individual species, plant
functional types (e.g., deciduous broadleaf trees and
grass), or by using general measures of vegetation (e.g.,
net primary productivity). The models may simulate
processes on subdaily to annual time-steps and over
spatial extents ranging from individual plot to global.
Input data for these models typically include climate data
(e.g., temperature and precipitation), atmospheric CO2

concentrations, and soil characteristics (e.g., soil texture).
The models may specify bioclimatic limits (e.g., lethal
temperatures) and other biophysical parameters (e.g.,
rooting depth and fire resistance) for particular species
or vegetation types. Dynamic vegetation models can
simulate changes in vegetation over time in response to
changing climate, whereas equilibrium vegetation mod-
els simulate vegetation under a static climate (e.g.,
average conditions).

Limitations and uses. The ecological processes
simulated in vegetation models are complex. In many
cases, the calculations of particular processes may
require empirical parameters that are not well known.
For example, changes in atmospheric CO2 concentra-
tions can affect plant water-use efficiency, but more
information about how this effect varies among different
plant species and life stages is needed to better represent
this response in vegetation models. Furthermore,
individual vegetation models may explicitly simulate
some processes, such as fire, but either ignore or
simplify other processes, such as grazing and insect
outbreaks, that may be as important in determining the
distribution of vegetation in certain areas (Seidl et al.
2011). As one might expect, the assumptions made in the
building and parameterization of vegetation models can
substantially affect model projections (Cramer et al. 2001;
Quillet et al. 2010).

Vegetation models vary in their complexity and ease
of use. Applying these models to particular manage-
ment and research questions can require a detailed
understanding of ecosystem processes and computer

programming expertise to correctly parameterize a
model. Vegetation models also differ in their ability to
account for the effects of land-use practices and land-
cover changes that may alter the flow of water or
nutrients, fire regimes, or the vegetation itself. To more
accurately project future climate-driven vegetation
changes, future vegetation models will need to incor-
porate land-use projections and simulate their effects
on vegetation.

Despite their limitations, all of the types of process-
based vegetation models discussed above have been
applied to conservation and natural resource manage-
ment questions, including silvicultural applications
(Pabst et al. 2008), forecasting areas of potential fire risk
(Lenihan et al. 2008), and simulating future changes in
habitat (Morin and Thuiller 2009). The choice of which
model or combination of models to apply to a particular
management question will depend on the specific
aspects of vegetation one wishes to simulate; its spatial
and temporal resolution; and the importance of partic-
ular processes, such as fire. For example, forest gap
models simulate stand-level processes, but many are
limited in their ability to predict vegetation responses
across broader spatial scales (Bugmann 2001). In
contrast, a dynamic global vegetation model may
simulate basic plant functional types that can be
translated into vegetation types or biomes (e.g., broad-
leaf evergreen forest, grassland, and conifer woodland)
over regional to global scales, but it may not be able to
simulate gradients in species composition or forest stand
structure.

Some limitations can be overcome by integrating
models of varying complexity and scale. For example,
aspects of forest gap models have been incorporated
into both landscape models (e.g., He et al. 2005; Keane
et al. 2011) and dynamic vegetation models (e.g., Smith
et al. 2001) to improve their simulations of plot-level
vegetation dynamics. Another approach uses a mathe-
matical approximation to scale-up the outcome of
stochastic gap model processes to resolutions suitable
for subcontinental scales (Moorcroft et al. 2001), resulting
in output that is both locally accurate and transferable
across regions (Medvigy et al. 2009). Although vegeta-
tion models generally cannot predict future vegetation
changes with high accuracy and spatial resolution, the
models can help managers to characterize the future
rates and magnitudes of potential vegetation changes
and to identify species and regions that may be
particularly sensitive (or particularly resilient) to future
climate changes (e.g., Lenihan et al. 2008). These results
in turn can be used to help inform the management of
animal species and their habitat in the face of climate
change. They can provide guidance on where to restore
and where not to restore habitats, which populations to
monitor, and where populations will need to be
intensively managed.

Case study. Prairies and savannahs are some of the
most threatened ecosystems in the United States
(Hoekstra et al. 2005). Consequently, the prairies and
savannas of the Pacific Northwest are home to a large
number of state-listed and federal candidate species,
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including the streaked horned lark Eremophila alpestris
strigata, Taylor’s checkerspot butterfly Euphydras editha
taylori, Mazama pocket gopher Thomomys mazama,
and western gray squirrel Sciurus griseus. Managing
populations of these species requires an understanding
of how climate change will alter their habitats. Projected
changes in vegetation across the Pacific Northwest will
have the potential to inform decisions about which
populations to monitor, where to put limited restoration
dollars, and how to plan for connectivity. Bachelet et al.
(2011) summarized output from a dynamic global
vegetation model (Rogers et al. 2011) projecting
potential climate-driven changes in vegetation in the
Willamette Valley-Puget Trough-Georgia Basin ecoregion
(Box 4). From all of the GCMs in the IPCC AR4, they
selected three GCMs whose projections captured the
range of outputs for the region and included three CO2

emissions scenarios. Of the nine model runs considered,
none projected an increase in prairie and savanna
habitats for the end of the century, likely because the
dynamic global vegetation model simulated higher
water use efficiency in trees accompanying greater
atmospheric CO2 concentrations, thereby increasing
their tolerance of drought. Instead, the cool and wet
climate projection produced no change in simulated
vegetation distributions, the hot and dry projection
simulated the western expansion of dry forest from the
eastern Cascades, and the hot and wet projection
simulated the northward expansion of warmer forests.
Thus, prairie and savanna ecosystems appear likely to
remain rare with climate change. Yet, empirical evidence
assembled by Bachelet et al. (2011) suggests that prairies
and savannas may be more resilient than forests to warm
and dry summers, particularly if climate change brings
more extreme drought and fire. Bachelet et al. (2011)
therefore advise managers to restore prairies in
unproductive agricultural lands and forest lands that
are likely to become warmer and drier with climate
change. Managers also may want to consider assisted
migration within the ecoregion to increase populations
of rare species. Finally, managers may want to monitor
and improve existing sites that are likely to continue
functioning as prairies over the coming century.

Individual species models
The ultimate goal of fish and wildlife management is

stable, resilient animal populations that can only be
assessed with species-specific models. Individual species
models can be designed to estimate habitat suitability,
species distributions, movement, and population-level
(i.e., demographic) responses. Many modeling approach-
es that estimate historical changes in populations of
threatened and endangered species also can be used to
simulate future climate-induced changes.

Empirical approaches, typically referred to as climate-
envelope, niche, or bioclimatic models, are used to
project potential climate-driven shifts in species distri-
butions (Pearson and Dawson 2003; Heikkenen et al.
2006). These models use either statistical or machine-
learning methods to identify relationships between
current species distributions and current climate, and

they use future climate to generate projected distribu-
tions. Most empirical models use only climatic variables
as predictors (e.g., temperature, precipitation, growing
degree days, and drought indices), but some have
incorporated other variables, such as land cover,
elevation, or soil type (Prasad et al. 2006).

Whereas empirical models have generally been used
to project changes in species’ potential distributions,
process-based models have been used to simulate a
wider array of species-specific ecological effects. For
example, dispersal models can simulate movement in
response to climate change (e.g., Iverson et al. 2004);
population models can simulate annual recruitment as
a function of climate-driven changes in habitat, food
resources, predators, or competitors (e.g., Carroll 2007);
distribution models can make projections based on
phenology, reproduction, and survival (e.g., Morin and
Thuiller 2009); and bioenergetic models can project the
responses of trophic groups (e.g., phyto- and zooplank-
ton) to climate-driven changes in total energy (e.g.,
Peeters et al. 2007). Generally, climate is incorporated
into these models through empirical relationships
between temperature, precipitation, or both and indi-
vidual fitness, such as making growth and reproduction a
function of water temperature (Clark et al. 2003) or
varying survival with annual snowfall (Carroll 2007).
Empirical and process-based models also can be linked;
for example, using empirical models of habitat suitability
as input to a process-based population model (e.g.,
Carroll 2007; McRae et al. 2008; Franklin 2010; Lawson
et al. 2010).

Limitations and uses. Empirical species distribution
models provide a preliminary estimate of how plant and
animal distributions may respond to climate change, but
they have several limitations. First, empirical models do
not directly model biotic interactions (e.g., predator–
prey dynamics, keystone species, competition, or host
specificity) that may influence potential range shifts
(Pearson and Dawson 2003; Zarnetske et al. 2012).
Second, these models generally do not address
dispersal capacity or barriers to dispersal that may
influence colonization of projected habitats (Pearson
and Dawson 2003; Schloss et al. 2012). Third, empirical
models do not consider evolutionary adaptation
(Pearson and Dawson 2003). Fourth, it is unclear how
models parameterized under present-day climates will
perform in simulated future climate with no present-day
analog (Williams and Jackson 2007; Williams et al., 2013).
Fifth, bioclimatic tolerances may vary across life stages,
impacting persistence and colonization (Jackson et al.
2009; Mclaughlin and Zavaleta 2012). Sixth, different
types of empirical models can produce very different
projected shifts in the potential range of a species,
sometimes introducing more uncertainty than the
underlying GCM projections (Garcia et al. 2012),
necessitating care in model selection and testing
(Thuiller 2004) or using ensembles of multiple models
(Araújo and New 2007).

Given these limitations, empirical species distribution
models are not currently accurate enough to be the sole
source of information for selecting reserve networks,
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identifying translocation sites, or deciding to abandon
management of a population. However, they are likely to
be useful for identifying populations at risk due to a
significant climate-driven range contraction (Pearson
and Dawson 2003). These models also can help focus
conservation efforts and monitoring programs by
identifying habitats where we might expect to see the
largest changes in flora or fauna (Araújo et al. 2006). For
specific management decisions regarding individual
species, these models can be used in conjunction with
experimental information, paleoecological records, and
simulations from detailed process-based models to
increase projection accuracy.

Although process-based models of species distribu-
tions and populations have the potential to provide
more accurate projections than empirical models, they
also have limitations. Many of these limitations are similar
to those discussed above in reference to the vegetation
models. First, many of the parameters and relationships
that would ideally be incorporated into these models are
poorly known, such as dispersal rates and temperature
and precipitation effects on survival and reproduction.
Second, the structure of process-based models may limit
their application. Some are built to investigate the effect
of one particular aspect of climate (e.g., temperature) on
reproduction, growth, or survival (Kell et al. 2005) and may

Tools for Assessing Climate Impacts C.B. Wilsey et al.

Journal of Fish and Wildlife Management | www.fwspubs.org June 2013 | Volume 4 | Issue 1 | 232



exclude other critical factors (e.g., dispersal, Clark et al.
2003). Still, when sufficient empirical information is
available to parameterize a process-based model, the
model is useful for characterizing population-level re-
sponses to climate change. Furthermore, process-based
models linked with other empirical (e.g., habitat) or
process-based models (e.g., vegetation, hydrology, and
fire) can be used to simulate cumulative effects (Lawson et
al. 2010) or to compare the relative effects of stressors
(Battin et al. 2007; Carroll 2007; McRae et al. 2008) on
species’ populations.

Case study. Marten and lynx Lynx canadensis in the
northern Appalachians of the United States and Canada
forage on top of snowpack during the winter, making
them sensitive to rising temperatures and declining
snowfall. Both are exploited populations occurring at the
southern limit of their distributions. Marten, in particular,
has recovered from near extirpation in the 1930s.
Marten populations are also sensitive to the loss and
fragmentation of mature forest stands with structurally
complex understories (Ray 2000). In an approach similar
to that taken by Battin et al. (2007), Carroll (2007) linked
multiple models to estimate the relative impacts of
climate change, logging, and hunting on marten pop-
ulations in the northern Appalachians (Box 5). The
system of linked models allowed for scenarios
addressing stressors individually and in combination.
Simulations demonstrated that declining snowpack may
have a greater impact than logging or trapping alone
and that logging may interact synergistically with climate
change to decrease marten populations. Carroll (2007)
summarizes results by state and province and makes
region-specific recommendations for habitat restoration,
logging, exploitation, and reintroduction potential. These
types of outputs would be very useful for species and
habitat management as well as decisions on logging and
hunting. However, the use of a single GCM and single
emissions scenario puts into question the generality of
these findings. Carroll (2007) does note that there is
agreement among all IPCC AR4 GCMs regarding the
direction and magnitude of projected changes in
temperature and precipitation for this geographic
region. However, representing that variability explicitly
would strengthen his conclusions.

Discussion

Using models for managing natural resources
Given the wide array of available models and their

numerous limitations (Table 1), fish and wildlife manag-
ers often wonder which model to use and how to apply
model projections to a given management decision. We
have provided a basic framework for climate-impacts
modeling (Box 1) and used it to discuss the results of
several climate-impact studies (Boxes 2–5). In general,
selecting one or more models to assess potential climate
impacts requires an understanding of the underlying
question and the key ecological processes involved. For
example, modeling climate impacts on fire-dependent
wildlife habitats will require, at the minimum, a
vegetation model that adequately addresses the effects

of climate on fire. Selecting an appropriate model also
requires matching the spatial and temporal scale of the
assessment with that of the model. For example,
although a macroscale hydrological model may provide
a useful estimate of runoff for a watershed, it may
provide relatively poor estimates of changes in stream
flow for a specific stream reach. The selection of a
particular model also will depend on the time, resources,
and technical capabilities available to the user. Here, the
difference between empirical and statistical models and
simulation models is paramount. Empirical models are
less complex, require fewer inputs, and are generally
more accessible; but they include a suite of biological
assumptions that observational data suggest are violat-
ed. Therefore, they are most appropriate for coarse-scale
projections of climate responses. A complex simulation
model may provide the best estimate of a species’
response to climate change, but often data, time,
modeling expertise, or a combination are lacking. In
those cases, first consider whether a broad-scale
modeling analysis including the geographic area of
interest has already been completed. Alternatively,
rethink the management question to no longer require
the additional accuracy (or ecological realism) that might
be provided by a more complex model, for example,
choosing to focus on changes in habitat suitability
instead of population demographics.

Increasingly, downscaled climate projections are avail-
able online (e.g., ClimateWizard, http://www.climatewi-
zard.org and the Oregon Climate Change Research
Institute, http://occri.net), and projections from hydro-
logical, fire, and vegetation models are being shared
through cooperative associations such as the U.S.
Department of Interior’s Landscape Conservation Coop-
eratives (http://www.doi.gov/lcc/index.cfm), the U.S.
Geological Survey’s National Climate Change and Wildlife
Science Center (https://nccwsc.usgs.gov), and nongov-
ernmental data-sharing portals such as Data Basin
(http://www.databasin.org). As these datasets become
more ubiquitous, it is critical for nonspecialists to
understand appropriate uses for model outputs.

Understanding the thornier issue of how model results
can inform management is as important as selecting the
best set of models for an assessment. No model can
predict the future with certainty. Furthermore, the
uncertainties inherent in future climate-change projec-
tions are increased when linked to ecological climate-
impacts models that have their own associated uncer-
tainty (Maslin and Austin 2012). In the case studies
described above, both Battin et al. (2007) and Carroll
(2007) linked multiple models to explore climate impacts
in conjunction with other stressors. Similar studies have
been completed for songbirds (McCrae et al. 2008),
wolverine (McKelvey et al. 2011), and plants (Lawson
et al. 2010). The best applications of these models treat
uncertainty explicitly. Thorough sensitivity analyses
calculating the impact of varying all components in a
system of linked models are currently rare (but see Fuller
et al. 2008; Conlisk et al. 2013), but they should be
pursued when possible to better understand the
behavior of any complex model. Evaluating projections
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from multiple GCMs and emissions scenarios is also
critical for quantifying uncertainty. For example, studies
indicate that using an ensemble of GCM projections,
preferably more than 10, is more important than the
careful selection of one or two projections for charac-
terizing future hydrologic impacts of climate change
(Pierce et al. 2009). Such approaches bracket potential
future outcomes of climate change and can be used in
making consensus recommendations for conservation or
in designing management actions robust to a range of
climate impacts (e.g., Bachelet et al. 2011).

Ensemble modeling combines the outputs of multiple
model projections, allowing the modeler to quantify the
confidence in model outputs across an array of different
inputs or model structures (Araújo and New 2007). For
example, ensembles of models can project mean or
median warming with associated confidence bands
(Solomon et al. 2007). Alternatively, ensembles can be
used to report the degree of agreement in model
projection; for example, 80% of modeled future climates
project at least a 50% change in the fauna of a given
region (Lawler et al. 2009). Although depicting only
mean values or the degree of consensus among model
projections can be useful, it also can be misleading.
Agreement within a set of model projections does not
mean that those models are correct. In some cases, such
as projecting the severity of future drought or flood
events, projections of extremes (minimums or maxi-
mums) may be more critical than consensus or mean
projections (e.g., Deser et al. 2012). However, agreement
among models with different structures does suggest
that those projections are robust to the assumptions of
multiple model designs (Morin and Thuiller 2009),
implying that the projections reflect a true underlying
pattern or trend.

Scenario-based modeling provides another approach
to exploring the potential effects of varying model inputs
or parameterizations. A scenario is a set of model
inputs reflecting how a system may behave or change.
Examples of scenarios include differing CO2 emissions
rates, patterns of urban development, and estimates of
plant water-use efficiency responses. Scenario-based
modeling contributes to the process of scenario-based
planning in which decisions are made by exploring the
impacts of several different potential future outcomes
(Peterson et al. 2003). Scenario-based modeling can be
used to compare the effects of particular climatic
changes (e.g., warmer and wetter vs. warmer and drier
climates) or to compare the potential effects of extreme
and mean projected changes. The IPCC, among others,
has provided guidance on scenario-based planning in
the context of climate change (IPCC-TGICA 2007).

Climate change vulnerability assessment provides a
framework for integrating climate-impacts projections
with empirical information to characterize the vulnera-
bility of species or ecological systems to climate change
(Williams et al. 2008; Glick et al. 2011). Vulnerability
depends on a species’ exposure and sensitivity to climate
change as well as its adaptive capacity and therefore
integrates information from diverse sources, including
modeling, natural history, experimental science, and

paleoecological records (Dawson et al. 2011; and, e.g.,
http://climatechangesensitivity.org). Vulnerability scores
and rankings can then point toward additional studies or
information gaps that help integrate climate change into
natural resource management decisions.

Another, complementary, way to use uncertain infor-
mation in the decision-making and planning process is
through adaptive management (Holling 1978; Peterson
et al. 2011). Adaptive management is an iterative process
in which multiple management actions are evaluated
with long-term monitoring, the outcome of which is
used to inform future management (Figure 1). The
inherent uncertainty of the ecological impacts of cli-
mate change makes it an appropriate application of an
adaptive management framework (Arvai et al. 2006).
Outputs of climate-impacts models can be used to
design a suite of short-term management prescriptions
and then be recalibrated with data or knowledge gained
from their monitoring. In one example, a hydrological
model will be used within an adaptive management
framework to reduce the frequency of algal blooms
under future climates (Viney et al. 2007). Adaptive
management will likely be a key tool for dealing with
the uncertainties inherent in climate-impacts projections
(West et al. 2009; Littell et al. 2011).

Conclusions

Climate-impacts modeling is a rapidly expanding field
of research. Models are becoming more sophisticated
and better able to capture physical and ecological
processes. Yet, at best, models will be an approximation
of an uncertain future. Therefore, it will always be critical
to address model uncertainty through model ensem-
bles and a range of future scenarios and to reevaluate
decisions regularly, ideally in a framework of adaptive
management. Also of value are ways of integrating
model outputs with experimental results, paleoecologi-
cal records (e.g., Martı́nez-Meyer et al. 2004), and expert
opinion. Questions to ask of any climate-impacts study
include the following: How well do you capture the
range of potential futures? How much agreement is
there among those models and scenarios? Can you
develop management strategies that are resilient to all
potential futures? This last question points toward
climate change adaptation for which many institutional
frameworks exist (Bachelet et al. 2010) and toward which
climate-impacts modeling can contribute.

Models play a critical role in our understanding of
climate-change impacts on ecological systems. For these
models to be useful, the uncertainties in model
projections need to be understood. However, these
uncertainties should not prevent researchers and man-
agers from using models to explore potential future
climate impacts, assess vulnerabilities, and develop
adaptation strategies.
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